关于初一数学下册知识点总结.docx
关于初一数学下册知识点总结 第七章 平面图形的熟悉(二) 一、学问点: 1、“三线八角” 如何由线找角:一看线,二看型。 同位角是“F”型; 内错角是“Z”型; 同旁内角是“U”型。 如何由角找线:组成角的三条线中的公共直线就是截线。 2、平行公理: 假如两条直线都和第三条直线平行,那么这两条直线也平行。 简述:平行于同一条直线的两条直线平行。 补充定理:假如两条直线都和第三条直线垂直,那么这两条直线也平行。 简述:垂直于同一条直线的两条直线平行。 3、平行线的判定和性质: 判定定理、性质定理 条件、结论、条件、结论 同位角相等,两直线平行,两直线平行,同位角相等 内错角相等,两直线平行,两直线平行,内错角相等 同旁内角互补,两直线平行,两直线平行,同旁内角互补 4、图形平移的性质:图形经过平移,连接各组对应点所得的线段相互平行(或在同始终线上)并且相等。 5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。 6、三角形中的主要线段:三角形的高、角平分线、中线。 留意:三角形的高、角平分线、中线都是线段。高、角平分线、中线的应用。 7、三角形的内角和:三角形的3个内角的和等于180°直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。 8、多边形的内角和: n边形的内角和等于(n-2)180°任意多边形的外角和等于360°。 第八章 幂的运算 幂(power)指乘方运算的结果。an指将a自乘n次(n个a相乘)。把an看作乘方的结果,叫做a的n次幂。 对于任意底数a,b,当m,n为正整数时,有 am÷an=am+n (同底数幂相乘,底数不变,指数相加) am÷an=am-n (同底数幂相除,底数不变,指数相减) (am)n=amn?(幂的乘方,底数不变,指数相乘) (ab)n=anan?(积的乘方,把积的每一个因式乘方,再把所得的幂相乘) a0=1(a0) (任何不等于0的数的0次幂等于1) a-n=1/an (a0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数) 科学记数法:把一个肯定值大于10(或者小于1)的整数记为a×10n的形式(其中1|a|10),这种记数法叫做科学记数法。 复习学问点: 1、乘方的概念 求n 个一样因数的积的运算,叫做乘方,乘方的结果叫做幂。a 叫做底数,n 叫做指数。 2、乘方的性质 (1)负数的奇次幂是负数,负数的偶次幂的正数。 (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。 第九章 整式的乘法与因式分解 一、整式乘除法 单项式与单项式相乘,把它们的系数,一样字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。ac5÷bc2=(a÷b)(c5÷c2)=abc5+2=abc7 注:运算挨次先乘方,后乘除,最终加减。 单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式。 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc 注:不重不漏,根据挨次,留意常数项、负号 ,本质是乘法安排律。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘:(a+b)(m+n)=am+an+bm+bn 乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差:(a+b)(a-b)=a2-b2 完全平方公式:两数和或差的平方,等于它们的平方和,加或减它们积的2倍:(a±b)2=a2±2ab+b2 因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式。 因式分解方法: 1、提公因式法:关键:找出公因式 公因式三局部:系数(数字)一各项系数最大公约数;字母-各项含有的一样字母;指数-一样字母的最低次数;步骤:第一步是找出公因式;其次步是提取公因式并确定另一因式。需留意,提取完公因式后,另一个因式的项数与原多项式的项数全都,这一点可用来检验是否漏项。 留意:提取公因式后各因式应当是最简形式,即分解到“底”;假如多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 2、公式法。a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子a2±2ab+b2=(a±b)2? 完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和或差的平方。 x3-y3=(x-y)(x2+xy+y2) 立方差公式 3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq 因式分解三要素:(1)分解对象是多项式,分解结果必需是积的形式,且积的因式必需是整式(2)因式分解必需是恒等变形;(3)因式分解必需分解到每个因式都不能分解为止。 弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差 添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证 第十章 二元一次方程组 1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns) 。 2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。 3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。 4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最终求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。 6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数; (2)找:找出能够表示题意两个相等关系; (3)列:依据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值; (5)答:在对求出的方程的解做出是否合理推断的根底上,写出答案。 第十一章 一元一次不等式 一元一次不等式 重点:不等式的性质和一元一次不等式的解法。 难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。 学问点一:不等式的概念 1、不等式: 用“”(或“”),“”(或“”)等不等号表示大小关系的式子,叫做不等式。用“”表示不等关系的式子也是不等式。 要点诠释: (1) 不等号的类型: “”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小; (2) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。 2、不等式的解: 能使不等式成立的未知数的值,叫做不等式的解。 要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进展比照理解,一般地,要推断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进展推断。 3、不等式的解集: 一般地,一个含有未知数的不等式的全部解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-41的解集是x5:不等式的解集与不等式的解的区分:解集是能使不等式成立的未知数的取值范围,是全部解的集合,而不等式的解是使不等式成立的未知数的值。二者的关系是:解集包括解,全部的解组成了解集。 要点诠释:不等式的解集必需符合两个条件: (1)解集中的每一个数值都能使不等式成立; (2)能够使不等式成立的全部的数值都在解集中。 学问点二:不等式的根本性质 根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 符号语言表示为:假如 ,那么 。 根本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。 符号语言表示为:假如 ,并且 ,那么 (或 )。 根本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向转变。 符号语言表示为:假如 ,并且 ,那么 (或 ) 要点诠释: (1)不等式的根本性质1的学习与等式的性质的学习类似,可比照等式的性质把握; (2)要理解不等式的根本性质1中的“同一个整式”的含义不仅包括一样的数,还有一样的单项式或多项式; (3)“不等号的方向不变”,指的是假如原来是“”,那么变化后仍是“”;假如原来是“”,那么变化后仍是“”;“不等号的方向转变”指的是假如原来是“”,那么变化后将成为“”;假如原来是“”,那么变化后将成为“”; (4)运用不等式的性质对不等式进展变形时,要特殊留意性质3,在乘(除)同一个数时,必需先弄清这个数是正数还是负数,假如是负数,要记住不等号的方向肯定要转变。 学问点三:一元一次不等式的概念 只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0。这样的不等式,叫做一元一次不等式。 要点诠释: (1)一元一次不等式的概念可以从以下几方面理解: 左右两边都是整式(单项式或多项式); 只含有一个未知数; 未知数的最高次数为1。 (2)一元一次不等式和一元一次方程可以比照理解。 一样点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“”、“”、“”、“”连接),一元一次方程表示相等关系(用“=”连接)。 【关于初一数学下册学问点总结】