压力管道设计基础知识.pdf
本文由w e i qi 0 8 0 7 贡献d o c 文档可能在W AP 端浏览体验不佳。建议您优先选择T X T,或下载源文件到本机查看。压力管道设计部分第一章任务与职责1 .道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1)2)3)因应力过大或金属疲劳而引起管道破坏;管道接头处泄漏;管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4)2.1)2)3)4)5)6)管道的推力或力矩过大引起管道支架破坏;压力管道柔性设计常用标准和规范G B 5 0 3 1 6-2 0 0 0 工业金属管道设计规范 S H/T3 0 4 1-2 0 0 2 石油化工管道柔性设计规范 S H 3 0 3 9-2 0 0 3 石油化工非埋地管道抗震设计通则 S H 3 0 5 9-2 0 0 1 石油化工管道设计器材选用通则 S H 3 0 7 3-9 5 石油化工企业管道支吊架设计规范 J B/T 8 1 3 0.1-1 9 9 9 恒力弹簧支吊架17)8)9)J B/T 8 1 3 0.2-1 9 9 9 可变弹簧支吊架 G B/T 1 2 7 7 7-1 9 9 9 金属波纹管膨胀节通用技术条件 H G/T 2 0 6 4 5-1 9 9 8 化工装置管道机械设计规定1 0)G B 1 5 0-2 0 0 4 钢制压力容器 3.1)2)3)4)4.1)2)3)4)5)6)7)8)9)专业职责应力分析(静力分析动力分析)对重要管线的壁厚进行计算对动设备管口受力进行校核计算特殊管架设计工作程序工程规定管道的基本情况用固定点将复杂管系划分为简单管系,尽量利用自然补偿用目测法目测法判断管道是否进行柔性设计目测法L型 U型管系可采用图表法图表法进行应力分析图表法立体管系可采用公式法公式法进行应力分析公式法宜采用计算机分析方法计算机分析方法进行柔性设计的管道计算机分析方法采 用 CAE S AR I I 进行应力分析调整设备布置和管道布置21 0)设置、调整支吊架1 1)设置、调整补偿器1 2)评定管道应力1 3)评定设备接口受力 1 4)编制设计文件1 5)施工现场技术服务5.1)2)3)4)5)6)7)8)9)工程规定适用范围概述设计采用的标准、规范及版本温度、压力等计算条件的确定分析中需要考虑的荷载及计算方法应用的计算软件需要进行详细应力分析的管道类别管道应力的安全评定条件机器设备的允许受力条件(或遵循的标准)1 0)防止法兰泄漏的条件1 1)膨胀节、弹簧等特殊元件的选用要求1 2)业主的特殊要求31 3)计算中的专门问题(如摩擦力、冷紧等的处理方法)1 4)不同专业间的接口关系1 5)环境设计荷载1 6)其它要求第二章压力管道柔性设计1.管道的基础条件包 括:介 质 温 度 压 力 管 径 壁 厚 材 质 荷 载 端 点 位 移 等。2.管道的计算温度确定管道的计算温度确定管道的计算温度应根据工艺设计条件及下列要求确定:1)对于无隔热层管道:介质温度 低 于 6 5 c 时,取介质温度为计算温度;介质温度等于或高于6 5 时,取介质温度的9 5%为计算温度;2)对于有外隔热层管道,除另有计算或经验数据外,应取介质温度为计算温度;3)4)5)6)温度:对于夹套管道应取内管或套管介质温度的较高者作为计算温度;对于外伴热管道应根据具体条件确定计算温度;对于衬里管道应根据计算或经验数据确定计算温度;对于安全泄压管道,应取排放时可能出现的最高或最低温度作为计算47)进行管道柔性设计时,不仅应考虑正常操作条件下的温度,还应考虑开车、停车、除焦、再生及蒸汽吹扫等工况。3.4.5.1)2)3)量。6.1)管道壁厚计算管道壁厚计算内压金属直管的壁厚管道安装温度宜取2 0 (除另有规定外)。管道安装温度管道计算压力应取计算温度下对应的操作压力。管道计算压力管道钢材参数按 石油化工管道柔性设计规范 管道钢材参数按 石油化工管道柔性设计规范S H/T 3 0 4 1-2 0 0 2 执行一钢材平均线膨胀系数可参照附录A选取。钢材弹性模量可参照附录B选取。计算二次应力范围时,管材的弹性模量应取安装温度下钢材的弹性模根 据 S H 3 0 5 9-2 0 0 1 石油化工管道设计器材选用通则确定:当 S 0 0.3 8 5 时,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。2)对于外压直管的壁厚)应 根 据 GB 1 50-1 9 9 8 钢制压力容器规定的方法确定。7.管道上的荷载管道上可能承受的荷载有:61)重力荷载,包括管道自重、保温重、介质重和积雪重等;2)3)等;4)5)6)7)8)9)8.风 荷 载:地震荷载;瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;两相流脉动荷载;压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;机器振动荷载,如回转设备的振动。管道端点的附加位移压力荷载,压力荷载包括内压力和外压力;位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:1)2)3)4)5)静设备热胀冷缩时对连接管道施加的附加位移;转动设备热胀冷缩在连接管U处产生的附加位移;加热炉管对加热炉进出口管道施加的附加位移;储罐等设备基础沉降在连接管口处产生的附加位移;不和主管起分析的支管,应将分支点处主管的位移作为支管端点的附加位移。9.管道布置7管道的布置尽量利用自然补偿能力:1)2)3)4)改变管道的走向,以增加整个管道的柔性;利用弹簧支吊架放松约束;改变设备布置。对于复杂管道可用固定点将其划分成几个形状较为简单的管段,如 L形、I I 形、Z形等管段。确定管道固定点位置时,宜使两固定点间的管段能够自然补偿。1 0.宜采用计算机分析方法进行详细柔性设计的管道1)操作温度大于4 0 0 或小于一5 0 的管道;2)进出加热炉及蒸汽发生器的高温管道;3)进出反应器的高温管道;4)进出汽轮机的蒸汽管道;5)进出离心压缩机、往复式压缩机的工艺管道;6)法;与离心泵连接的管道,可根据设计要求或按图1T确定柔性设计方图 1-1与离心泵连接管道柔性设计方法的选择7)设备管口有特殊受力要求的其他管道;8)利用简化分析方法分析后,表明需进一步详细分析的管道。81 1.不需要进行计算机应力分析的管道1)与运行良好的管道柔性相同或基本相当的管道;2)和已分析管道相比较,确认有足够柔性的管道;3)对具有同一直径、同一壁厚、无支管、两端固定、无中间约束并能满足式(1)和式要求的非极度危害或非高度危害介质管道。D o?Y/(L-U)2 W 2 0 8.3 Y =(/X 2+/Y 2+/Z 2)2 式中:D O管道外径,m m;Y 管道总线位移全补偿值,m m;?x、?y、?z分别为管道沿坐标轴x、y、z方向的线位移全补偿值,m m;L 一一管系在两固定点之间的展开长度,m;U 管系在两固定点之间的直线距离,m。式(1 )不适用于下列管道:(1)在剧烈循环条件下运行,有疲劳危险的管道:(2)大直径薄壁管道(管件应力增强系数i 5):(3)不在这接固定点方向的端点附加位移量占总位移量大部分的管道;(4)L/U 2.5 的不等腿 I T 形弯管,或近似直线的锯齿状管道。一一(1)一一(2)91 2.管道端点无附加角位移时管道线位移全补偿值计算当管道端点无附加角位移时,管道线位移全补偿值应按下列公式计算:/X=/X B-/X A-/X t A BY=/Y B-/Y A-/Y t A B/Z=z I Z B-Z l Z A-Z l Z t A BX t A B=a l(X B-X A)(T -T O)Z l Y t A B=a 1 (Y B-Y A)(T -T O)Z Z t A B=a 1 (Z B-Z A)(T -TO)式中:/X、/Y、AZ 一一分别为管道沿坐标轴X、Y、Z方向的线位移全补偿值,m m:Z X A、Z Y A、Z Z A 一一分别为管道的始端A沿坐标轴X、Y、Z方向的附加 线 位 移,m m;/X B、Z Y B、/Z B-分别为管道的末端B 沿坐标轴X、Y、Z方向的附加 线 位 移,m m;/X t A B、Z Y t A B、/Z t A B一分别为管道AB 沿坐标轴X、Y、Z方向的热伸 长 值,m m;a t 一一管道材料在安装温度与计算温度间的平均线膨胀系数,m m/m m C;1 0X A、Y A.Z A 一一管道始端A的坐标值,m m;X B、Y B、Z B一一管道末端B 的坐标值,m m;T 管道计算温度,。C;T 0 管道安装温度,。C。1 3.例题利用判别式解题有两种方法:第一种方法注意如下四点和上面“+”、“一”号的取值。1)2)3)4)假定一个始端,一个终端始端固定,终端放开热膨胀方向由始端向终端热伸长量取正直第二种方法注意如下四点。和 SH/T 3041-2002中的公式一致1)2)3)4)假定一个始端,一个终端始端固定,终端放开热膨胀方向由始端向终端建立坐标系,端点附加位移和热伸长量与坐标轴同向取“+”,与坐标 轴 反 向 取“一”。上题计算如下:/Y=/YB/YA/Yt A B =04-12=-16 m m11/Y=/YB/YA /Yt A B =4-(-5)-(-20)=29 m m /Z=/Z B-/Z A-/Z t A B =2-0-(-24)=26 m m Y=(/Y 2+/Y 2+/Z 2)1/2=(-16)2+29 2+26 2 1/2=42.1 m mD O.Y/(L-U)2=159*42.l/(14-8.4)2=6 6 9 3.9/31.36 =213.45 208.3 所以需要进行详细分析,与上面的计算结果不同。这里需要说明的是,不是计算过程错误,而是新旧标准管径取的不一致,新标准为外径。第三章补偿器的选用首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器获得柔性。1.补偿器的形式压力管道设计中常用的补偿器有三种:n 型补偿器、波形补偿器、套管式或球形补偿器2.n 型补偿器n 型补偿器结构简单、运行可靠、投资少,在石油化工管道设计中广泛采用。采 用 n形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应 在 n 型补偿器两侧设置导向架。3.波形补偿器波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。1)波形补偿器条件(D 比用弯管形式补偿器更为经济时或安装位置不够时。12(2)连接两个间距小的设备的管道。其补偿能力不够时。(3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。(4)为了保护有严格受力要求的设备嘴子。2)波形补偿器的形式及适用条件(D 直管段使用轴向位移型轴向位移型;轴向位移型(2)两个方向位移的L 形,Z 形管段使用角型角型;角 型(3)三个方向位移的Z 形管段使用万向角型万向角型;万向角型(4)吸收平行位移的使用横向型横向型。横 向 型 3)选用无约束金属波纹管膨胀节时应注意的问题(1)两个固定支座之间的管道中仅能布置一个波纹管膨胀节;(2)固定支座必须具有足够的强度,以承受内压推力的作用;(3)对管道必须进行严格地保护,尤其是靠近波纹管膨胀节的部位应设置导向架,第一个导向支架与膨胀节的距离应小于或等于4 D N,第二个导向支架与第一个导向支架的距离应小于或等于14 D N,以防止管道有弯曲和径向偏移造成膨胀节的破坏;4)带约束的金属波纹管膨胀节的类型带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点处,而是由约束波纹管膨胀节用的金属部件承受。(1)单式较链型膨胀节,由一个波纹管及销轴和钱链板组成,用于吸收单平面角位移;13(2)单式万向较链型膨胀节,由 个波纹管及万向环、销铀和较链组成,能吸收多平面角位移;(3)复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能吸收多平面横向位移和拉杆问膨胀节本身的轴向位移;(4)复式较链型膨胀节,由用中间管连接的两个波纹管及销轴和较链板组成,能吸收单平面横向位移和膨胀节本身的轴向位移;(5)复式万向较链型膨胀节,由用中间管连接的两个波纹管及销轴和钱链板组成,能吸收互相垂直的两个平面横向位移和膨胀节本身的轴向位移;(6)弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹付和平衡波纹管外端间装 有 拉 杆。此种膨胀节能吸收轴向位移和/或横向位移。拉杆能约束波纹管压力推力.常用于管道方向改变处;(7)直管压力平衡型膨胀节,一般位于两端的两个工作波纹管及有效面积等于二倍工作波纹管有效面积、位中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连拔起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。5)波纹管膨胀节在施工安装中应注意的问题(1)膨胀节的施工和安装应与设计要求相一致;(2)膨胀节的安装使用应严格按照产品安装说明书进行;(3)禁止采用使膨胀节变形的方法来调整管道的安装偏差;14(4)固定支架和导向支架等应严格按照设计图纸进行施工,需要改动时应经原分析设计人员认可;(5)膨胀节上的箭头表示介质流向,应与实际介质流向相一致,不能装反;(6)安装较链型膨胀节时,应按照施工图进行,钱链板方向不能装错;(7)在管道系统(包括管道、膨胀节和支架等)安装完毕,系统试压之前,应将膨胀节的运输保护装置拆除或松开。按照国标G B/T 12 7 7 7 的规定,运输保护装置涂有黄色油漆,应注意不能将其他部件随意拆除;(8)对于复式大拉杆膨胀节,不能随意松动大拉杆上的螺母,更不能将大拉杆拆除;(9)装有膨胀节的管道,做水压试验时,应考虑设置适当的临时支架以承受额外加到管道和膨胀节上的荷载。试验后应将临时支架拆除。3.套管式或球形补偿器套管式或球形补偿器因填料容易松弛,发生泄漏,在石化企业中很少采用。在有毒及可燃介质管道中严禁采用填料函式补偿器。4.1)冷紧冷紧冷紧可降低操作时管道对连接设备或固定点的推力和力矩,防止法兰连接处弯矩过大而发生泄漏。冷紧是将管道的热应变一部分集中在冷态,在安装时(冷 态)使管道产生一个初位移和初应力的一种方法。当管道沿坐标轴X、y、Z方向的冷紧比不同时,每个方向的冷紧值应根据该方向的冷紧进行计算。当管道上有几个冷紧口时,沿坐标轴X、y、Z方向的冷紧值分别为各冷紧口在相应坐标轴方向冷紧值的代数和。1 5管道采用冷紧时,热态冷紧有效系数取2/3,冷 态 取 1。2)连接转动设备的管道不应采用冷紧由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成后要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。3)自冷紧如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧自冷紧。但冷紧不自冷紧改变热胀应力范围。4)冷紧比冷紧比是冷紧值与全补偿量的比值。对于材料在阳变温度下工作的管道,冷紧比宜取0.7。对于材料在非蠕变温度下工作的管道,冷紧比宜取0.5。第四章支吊架选用L 管道跨距管道基本跨距的确定实际上就是管系承重支架(或起承重作用的支架)的位置和数量的确定,也就是说管系中承重支架的位置和数量应满足管道基木跨距的要求。为了简化计算,对于水平连续敷设的管道,以三跨连续梁作为计算模型,并1 6按承受均布载荷(指管道自重、介质重和隔热材料重之和)分别根据刚度条件和强度条件计算其最大允许跨距,取(L 1 和 L 2)两者之间的小值。(1)刚度条件:L 1 =O.0 3 9(E tI/q)l/4L l=0.0 4 8(E tI/q)l/4 式 中 L l、L T 装置内(外)由刚度条件决定的跨距,m;E t 管材在设计温度下的弹性模量,M P a;I 一 管子扣除腐蚀裕量及负偏差后的断面惯性矩,mm4;q 每米管道的质量,N/m。(2)强度条件:L 2 =0.1 (。tW/q)1/2 L 2 =0.0 7 1 (。tW/q)l/2 式 中 o t 一 管材在设计温度下的许用应力,M P a;W 一一管子扣除腐蚀裕量及负偏差后的抗弯断面模数,mm3。I和 W分别按以下二式计算:I=n(D o4-D i4)/6 4 W =”(D o4-D i4)/3 2 D o(不考虑内压)(考虑内压)(装置内)(装置外)1 7式中D i-管道内径,mm;D o-管道外径,mm。2.管道支吊架的形式:管道支吊架的形式:管道支吊架的用途为:1)2)3)承受管道的重量荷载(包括自重、介质重和隔热材科重等);限制管道的位移,阻止管道发生非预期方向的位移;用来控制管道的振动、摆动或冲击。因此,管道支撑的位置确定、支撑型式的确定以及管道支吊架本身的强度设计也主要是围绕着上述支吊架的三个功能展开的。根据管道支吊架的用途可以分为三大类:刚性支吊架可调刚性支吊架 承重支吊架 可变弹簧支吊架 恒力弹簧支吊架固定支架限位支架限制性支吊架导向支架1 8减振器防振支架阻尼器固定架限制了三个方向的线位移和三个方向的角位移;导向架限制了两个方向的线位移;支托架(或单向止推架)限制了一个方向的线位移。3.承重支吊架以支撑管道自重及其它持续载荷为目的的支吊架统称为承重支吊架,它主要用于防止管道因自重及其它持续载荷(如介质重、隔热材料重、雪载荷等)而导致的管道强度或刚度超出标准要求。根据管道相对于支撑结构的空间位置不同,承重支吊架可分为支架和吊架两大类。支撑件将管道支撑在它的上方时,这类支撑件叫做支架。用可以空间摆动的支撑件(吊杆)将管道吊在其下面支撑时,这类支撑件叫做吊架。支架和吊架都可以完全或部分限制管道的向下位移,但二者的支撑效果有所不同。支架因与支撑管道之间可能存在摩擦而使得管道的水平位移受到一定的阻碍,同时产生摩擦力。支架的刚度也比较大,故其稳定性较好。吊架对管道的约束刚度相对较小(除竖直方向外),也不存在摩擦力,如果在一根较长的管道中吊架用的太多,会使管系不稳定,故在条管道中,一般不宜均用吊架进行支撑。根据承受管道重量的特点不同,承重支吊架又分为刚性支吊架、可调刚性支吊架、可变弹簧支吊架和恒力弹簧支吊架四类。1)刚性支吊架刚性支吊架仅限制管道一个方向(通常为-Y方向)的自由度。它常用于管道在支撑点无向上垂直热位移和附加位移的情况下,或用于支撑点有较小的向下位移和附加位移但不会由此在管系中造成较大的管系力的情况下。刚性支吊架是应用19最多的一种支吊架。根据应用场合和生根条件的不同,常用的刚性支吊架系列有平(弯)管支托、假管支托、悬臂支架、临管支架等。2)可调刚性支吊架可调刚性支吊架是一般刚性支吊架的种特殊型式,即通过旋拧可调螺丝,使支吊架的高度在一定范围内得到调整,用于有少量竖直方向的热位移或附加位移的场合。在工作工况下,当支撑点有竖直方向的热位移或附加位移时,会使管道脱离支架(俗称支架脱空)而起不到支撑作用,或使支架被顶死而产生较大的管系力,此时应采用下面将要介绍的弹簧支吊架。如果支撑点竖直方向的热位移或附加位移比较小而且又位于容易接近的地方时,采用可调刚性支吊架比弹簧支吊架会更经济、更方便。3)可变弹簧支吊架可变弹簧支吊架适用于支撑点有垂直位移、用刚性支吊架会脱空或造成过大热胀推力的场合。与恒力弹簧支吊架相比,使用可变弹簧支吊架会造成一定的荷载转移。为防止过大的荷载转移,可变弹簧支吊架的荷载变化率应控制在25%以下。当然,有时根据实际需要而有意识地去分配管系在各支撑点的载荷,即有意识地给定一个较大的安装载荷而获得较大的载荷转移。常用强型的可变弹簧支吊架有支、吊两种,根据载荷情况和受力条件还可采用串联和并联两种型式。4)恒力弹簧支吊架恒力弹簧支吊架适用于管道支撑点垂直位移量较大或管系受为要求较苛刻的场合。通过采用恒力弹簧支吊架,可以避免管道支撑点冷态和热态的受力变化太大而导致管系本身的应力或相连设备的受力超标。恒力弹簧的恒定度应小于或等于6%,以保证支吊点发生位移时,支承力的变化很小。恒力弹簧支吊架一般采用描架型式,且根据受力情况可并联使用。20如果认为刚性支吊架的刚度理论上为无穷大的话,那么恒力弹簧支吊架的刚度理论上则为零,而可变弹簧支吊架的刚度介于二者之间,它等于弹簧产生单位变形所需要的力。4.限位支吊架以限制和约束因热胀而引起的管系位移为目的支吊架称为限位支吊架。管系受热而发生热胀时,管系中的各点将发生位移。在管系中适当设置限位支吊架,可控制支撑点的位移或某些方向的位移,使管系的变形或各点的位移朝着有利于保护敏感设备或有利于热补偿的方向进行。根据对管系热位移约束的方式不同,限位支吊架又可分为固定支架、导向支架和止推支架三种。1)固定支架固定支架可限制管道支撑点三个方向的线位移和三个方向的角位移,因此它常用于管道上不允许有任何位移的地方。固定支架一般同时又能起承重作用。常用的固定支架型式有焊接型管托和螺拴固定管托两种。2)导向支架导向支架可限制管道支撑点两个方向的线位移,因此常用于引导管道位移方向、使管道能沿轴向位移而不能横向位移的情况。当用于水平情况时,导向支架又同时能起承重作用。常用的导向支架型式有管托型导向支架、光管型导向支架、管卡型导向支架等型式。3)止推支架止推支架常代替固定支架用于限制管道的轴向位移。根据限位方式的不同,常用的止推支架又分为+X/+Z和-X/-Z”双向止推支架和“+X/+Z”或-X/-Z单向止推支架两种。常用的止推支架为单向止推架,它可限制管道支撑点一个方向的线位移。5.防振支架21专门用于控制管道振动的支吊架叫做防振支架o防振支架常用于控制或缓解往复式机泵迸出口管道或由地震、风载荷、水击、安全阀排出反力引起的管道振动场合。应该说,前面所讲的支吊架类型中,除吊架以外,其它支架都在某种程度上起到防振作用,但它们中要么防振作用的效果不好,要么会带来其它问题(如降低或限制了管系的热补偿能力),因此,工程上对于防振情况则给出了专用支架。常用的防振支架主要有两类,其一是防振管卡,其二是阻尼器。1)防振管卡防振管卡能有效地控制管系的高频率强迫振动。防振管卡与固定支架不同,它允许管道有一定的轴向位移而使管系不会因热胀而破坏。防振管卡与一般的刚性承重支架和导向支架不同它对管道施加了较大的刚度约束(从型式和数量上实现),且增加了架对管道的阻尼作用从而有效地阻滞了管系的振动。2)阻尼器阻尼器与减振支架的最大区别遮于它给予了管系较大的自由度,因而对连续强迫型高频机械振动的抑制效果较差,它常用于缓解瞬间激振(如主汽门突然关闭、泵突然停车、地震、水锤等)引起的有阻尼自由振动。工程上应用的阻尼器有油压式阻尼器、摩擦式阻尼器等。6.目前工程上常用的弹簧支吊架主要有两类:目前工程上常用的弹簧支吊架主要有两类即可变弹簧支吊架和恒力弹簧支吊架,而且已形成标准系列。对应的国家标 准为G B 1 0 1 8 1 恒力弹簧支吊架和 G B 1 0 1 8 2 可变弹簧支吊架。1)可变弹簧支吊架的工作原理可变弹簧支吊架的核心部件是一个被控制的圆柱弹簧,当被支撑管道发生竖向位移时,会带动圆柱弹簧的控制板使弹簧压缩或被拉长。22由虎克定律可知,此时弹簧压缩或伸长所需要的力(也等于对管子的作用力)可用下式表示:F=k?8 式 中 F 一一弹簧被压缩或被拉长8 量时所需要的力,N;K 一一弹簧刚度,N/mzm8弹簧被压缩或被拉伸的变形量,mm。弹簧刚度是一个只与弹簧自身参数(如弹簧直径、弹簧材料等)有关的物理量,旦弹簧参数定,它是个常数(在其允许总变形量的3 0%7 0%范围内是个常数)。因此,此时弹簧对管道的作用力则与变形量成正比。工程上正是糊糊的这一性质来进行有垂直位移的管道支撑的。对于标准弹簧支吊架来说,弹簧都是经过预压缩然后装入弹簧箱中的。因此,对于同样一个变形量6 ,此时压缩弹簧所需耍的力F应按下式计算:F =(8 l+8)k =5 lk+6?k =Fl+k8式 中 5 1 一一弹簧预压缩的变形量,mmF l 弹簧预压缩时的压缩力,N;F、6、k 意义同前:设 F为弹簧支吊架的工作载荷,并用符号F G 表示:设 F1为弹簧支吊架的安装荷载,并 用 F A 表示:设 S为弹簧在由安装载荷变为工作载荷时的变形量,并在弹簧被压缩时取正号,被拉伸时取负号。S在管道支撑中即为管道支撑点的竖23直位移量,支撑点的竖直位移向上时取正号,向下时取负号 可变弹簧支吊架的可选型公式为:选型公式为:F A =k 6+F G 2)常用可变弹簧支吊架系列国家标准G B 1 0 1 8 S 共给出了 A、B、C、D、E、F、G七种标准型式,见图 所示。A型一上螺纹悬吊型;B型一一单耳悬吊型;C型一一双耳悬吊型:D型一一上调节搁置型;E型一一下调节搁置型;F型一一支撑搁置型;G型一一并联悬吊型。7.可变弹簧支吊架的选用工程上,一般按热态吊零的载荷分配原则确定弹簧支吊架的受力。所谓热态热态吊零,是指弹簧支吊架在热态时承受的力应等于冷态时由管系分配给它的力。按吊零这样的原则确定的弹簧支吊架受力使得整个管系中各支撑点承受的自重力在热态时比较均匀,但在热态时管系中各点的总载荷会因位移荷载的作用而不再均匀甚至会出现严重的不合理现象,为此,工程上有时也采用冷态吊零冷态吊零的载荷分配原冷态吊零则。所谓冷态吊零是指弹簧支吊架在冷态时承受的载荷取冷态时由管系分配给它的载荷。与热态吊零相反,此时在热态情况下管系各支撑点承受的自重载荷已不在均匀,而总载荷(包括位移载荷)则是自然分配。2 4为防止可变弹簧支吊架引起管系在热态或冷态时有较大的载荷转移,工程上工程上。根据这一限制条件,就可以确定弹簧支吊常控制它的载荷变化率不超过2 5%。架的刚 度 k。在确定弹簧支吊架的刚度时应遵守这样一个原则:在弹簧支吊架能满足管系热态和冷态的承载要求而且载荷变化率不超过规定值的情况下,应尽可能选用刚度最小(指最小规格和最小允许位移值)的弹簧。按这样的原则选取的弹簧支吊架,其安装尺寸最小,价格最便宜,而且实际的载荷变化率最小。1)串联可变弹簧支吊架的选用当管系中某点的垂直位移量较大时,从标准弹簧支吊架表中可能已选不到合适的弹簧支吊架,即要么找不到最大工作位移能满足载荷要求的标准系列,要么因刚度较大而使载荷变化率超出标准要求,此时可考虑采用串联可变弹簧支吊架。弹簧串联时,应选最大载荷相同的弹簧,即弹簧的牌号相同,以保证每个弹簧的工作载荷和安装载荷都落在允许范围内,而此时每个弹簧变形量则按其刚度的大小成反比分配。2)并联可变弹簧支吊架的选用当管道支撑点的载荷超出标准可变弹簧支吊架的最大允许载荷时,或者受支撑条件(如竖管支撑)、生根条件等限制不宜采用单个可变弹簧支吊架进行支撑时,可选用两个或两个以上的可变弹簧支吊架并联支撑。可变弹簧支吊架并联使用时:各弹簧应为同一型号,以避免各弹簧支承力不同而导致管子的倾斜或偏转。并联时的各弹簧变形量相同,均等于管道在支撑点的位移量。并联后的弹簧支吊架总刚度等于各分弹簧支吊架的刚度之和,n个弹簧支吊架并联时其总刚度为即k =k l+k 2 +k n,而各分弹簧承受的载荷平均分配,并等于总载荷的1/n。3)可变弹簧支吊架的安装要求可变弹簧支吊架在安装前务必要压缩到要求的安装定位刻度(与安装载荷对应的刻度值),并用定位销进行定位。设置定位销的另一个作用是使可变弹簧支2 5吊架起暂时成为一个刚性支架,可以防止诸如水压试验等非工作工况下因管道载荷临时增加而引起的不利影响,对于大直径气体管道更应考虑这个问题。管系在工作状态下,有时也会出现非预期的载荷突然增加现象,如减压转油线的 淹塔 现象。淹塔”现象会造成管内液体的突然骤增,从而使其弹簧支吊架承受的载荷也骤然增大,弹簧支吊架的变形量也将随之增大,使管系出现较大的载荷转移,从而可能造成相邻支架或设备接口处的超载破坏。对于可能出现上述现象的管系,工程上常在弹簧支吊架的附近设置保险杆,以控制弹簧的最大变形量,即当弹簧支吊架的变形量超过某一规定值时,保险杆将受力而成为刚性支撑。可变弹簧支吊架的定位销应在管系水压试验之后、装置开车升温之前拆除。8.恒力弹簧支吊架恒力弹簧支吊架当管系在支撑点的竖向位移较大而选用可变弹簧会引起较大的载荷转移时,应考虑选用恒力弹簧支吊架。所谓的竖向位移较大只是一个相对概念,关键要看若选用可变弹簧支吊架时是否会引起较大的载荷转移,而且较大的载荷转移能否为管系自身强度和边界条件所接受。如果管系的柔性不好,刚度较大,那么既使在较小的位移值情况下,也会引起支撑点热态和冷态的载荷差值较大,此时为减少载荷变化率也宜采用恒力弹簧支吊架。严格说来,恒力弹簧在其工作过程中对管道支撑点的力并不是恒定不变的,这是因为弹簧支架各运动部件之间存在摩擦力,而且各部件的尺寸、弹簧的刚度等都可能存在制造偏差,这些因素都会导致恒力弹簧在其工作行程范围内对支撑点的力有少量的变化。一般情况下,标准恒力弹簧支吊架在其全程位移过程中的最大和最小载荷偏差应控制在某个数值范围内,而工程上常用恒定度这一概念来评判恒力弹簧的载荷变化。所谓恒定度是指恒力弹簧在其全行程范围内的最大、最小载荷值之差与最大、最小载荷值之和的百分比,用式子表示即为:式 中 D 一一恒力弹簧的恒定度。一般情况下,D应不大于6%F m a x 一 恒力弹簧在全行程范围内出现的最大载荷值,N;D =(F m a x F m i n)/(F m a x +F m i n)X 1 0 0%2 6F m i n 恒力弹簧在全行程范围内出现的最小载荷值,N。1)恒力弹簧支吊架的工作原理当恒力弹簧支吊架承受一个管道载荷矶时,将产生一个相对于0点 的 转 动 F1力矩M E Ml将拉动三连杆A 0 B 向下转动,同时三连杆会带动B点向右移动,从而使弹簧受到压缩,产生一个弹簧力F 2。F2相对于主轴0点也将产生一个转动力矩M 2。通过适当的结构和力的平衡设计,可以使两个力矩M l和 M 2始终保持平衡,并通过适当的结构尺寸设计,在保持力矩平衡的情况下,只不断变换位置但大小不变,即实现对管道的恒力支撑。2)恒力弹簧支吊架的选用换句话说,吊架的承载能力与其结构设计有关。因此,支撑点的管道载荷是选择恒力弹簧吊架的参数之一。根据热态吊零原则,一般取管道荷载为冷态情况下管系的分配载荷。另外,受吊架中各运行部件的结构限制,吊点的位移是有限制的,甚至它不能按运行部件的最大运行位置来确定吊点的位移范围,因为运行部件到达极限位置时,会造成较大的承载偏差值。因此,对于一个结构参数一定的恒力弹簧吊架,它允许的最大位移值也是确定的。或者说,管道上时最大位移量也是确定恒力弹簧吊架的参数之一。有关的标准已将常用的恒力弹簧吊架进行了系列化,并对它进行了编号,每个编号的吊架其允许的最大承载和最大位移己列表给出,设计人员只要根据管道支撑点的载荷和位移查表即可确定所需要的恒力弹簧吊架规格型号。9.在管道中多设弹簧支吊架更安全吗?在管道中多设弹簧支吊架更安全吗不一定更安全,因为弹簧支吊架的刚度远低于刚性支吊架,所以过多设置弹簧支吊架会使管系各点位移方向失去控制,管系稳定性较差,易产生偏斜和振动。1 0.为什么要在高耸设备布置的竖直管道上设置导向架?如何设置?为什么要在高耸设备布置的竖直管道上设置导向架?如何设置2 7答:为了约束山风裁、地震、温度变化等引起的横向位移。沿直立设备布置的立管应设置导向支架。立管导向支架间的允许间距应符合卜表规定:管道公称气体管道/m液体管道/m光 管 直 径 m m隔热光管隔热2 54.33.44.03.44 05.24.04.63.75 05.84.64.94.38 07.06.16.15.51 0 07.97.06.76.11 5 09.88.87.97.32 0 01 1.31 0.18.88.22 5 01 2.51 1.62 89.89.43 0 01 3.71 2.81 0.41 0.13 5 01 4.61 3.41 0.71 0.44 0 01 5.51 4.31 1.311.045016.515.211.611.650017.416.212.512.260019.218.013.413.41 1.为什么在沿反应器布置的高温竖直管道上,通常要设置弹簧支吊架?为什么在沿反应器布置的高温竖直管道上,通常要设置弹簧支吊架答:沿反应器布置的高温管道与反应器之间,或高温管道与构架之间有较大的位移差,所以通常要设弹簧支吊架来承受管道荷重。1 2.管道在支架上滑动的轴向最大允许位移量管道在支架上滑动的轴向最大允许位移量不宜超过定型滑动管托长度的4 0%,以免管道在热胀时将管托滑落于支架梁的下面,而在冷缩时不能恢复原位造成管道或支架损坏。如在补偿值允许的范围内,管道的位移量超过管托长 度 的 40%时,可将管托长度适当加大。1 3.支吊架的位置确定29从前面的介绍中可以看出,不同的支吊架型式对生根条件有不同的要求,而从保障管系的自身强度、稳定性、防振以及对边界条件的要求来说,总存在着在管系的某个地方支撑、并以特定的支架型式支撑为最理想。上述的两个条件有时是矛盾的,即最理想的支撑位置并不一定具备支架生根条件,可用的生根条件并不一定满足最理想的支架型式需要。要处理好这样的问题是比较难的,或者说要将它上升到理论匕 去论述是比较难的,有忖工程经验比理论更适用。实际的空间管系也是多样化的。1)基本原则(1)对于不同的管系,在确定其支吊架位置时都应遵守下列基本原则:管道支吊架的位置、数量、型式等应能满足管系静应力分析的要求。这个要求包括管系自身的强度、稳定性、最大位移以及对相连设备、生根设施的力学要求;(2)管道支吊架的位置、数量、型式应能满足管系动应力分析的要求。这个要求包括管系对管道的机械振动、水击、放空反冲击、地震、风载等载荷作用下的力学要求;(3)管道支吊架应具备相应的生根条件。当该条与上述两条发生冲突肘,应考虑改变管系的走向,最终使上两条要求得到满足;(4)支吊架应尽可能利用已有的建构筑梁柱、平台、设备本体、加热炉钢结构、地面等作为生根点。对于有可能集中支撑的管道,应尽可能选择适宜的地方和方式集中支撑;(5)支吊架位置应不妨碍操作人员的通行、设备的检修和管道的拆卸等;(6)支吊架的位置尚应考虑经济性原则。例如,对于管道比较集中的管廊,其跨距应视多数管道的允许跨距而定,而不宜以少数较小直径管道的允许跨距确定;(7)支吊架的位置应尽可能整齐有序,使支撑效果美观大方。302)承重支吊架位置的确定承重支吊架的位置除满足上述的基本原则之外,尚应符合下列要求:(1)支吊架位置应能满足管道最大允许跨度的要求。跨距要求见后面所述;(2)当有集中载荷时,支架应布置在靠近集中载荷的地方,以减少偏心载荷和弯曲应力;(3)在敏感设备(泵、压缩机)的附近,宜设置承重支架,以防止设备嘴子承受过大的管道荷载;(4)支吊架应设在弯管和大直径三通式分支管附近;(5)当塔器的水平管嘴直接安装D N 注 1 5 0 的阅门时,应在阀门附近设承重支架;(6)沿立式容器、立式设备等敷设的竖直管道,应在尽可能靠近嘴子处的竖管上设承重支架;(7)一 般较长的竖直管道,应在靠近上面的端部设承重支架;(8)当某些管道元件需要拆卸移走或相连设备需要拆卸移走时,应考虑相连管子的稳定性必要时应设承重支架。3)固定支架位置的确定固定支架的位置除满足上述的基本原则之外,尚应符合下列要求:(1)对于复杂管系,可用固定支架将它划分成几个形状较先简单的管段,L 如形管段、U形管段、Z形管段等,以便分段遇行分析计算和柔性设计;(2)确定管道固定支架位置时、应使其有利于两固定点之间管段的自然补偿;3 1(3)选 用 口 形补偿器时,宜将其设置在两固定支架的中部不能位于两固定支架的中部时,n 型补偿器距固定支架的距离不宜小于两支架间距的1/3;(4)固定支架宜靠近需要