整式的加减教学设计【最新9篇】.docx
整式的加减教学设计【最新9篇】整式的加减 篇一 整式的加减教学反思一 整式的加减是全日制人教版七年级数学教材的一个主要内容,它是解方程、解不等式的重要基础,整式的加减是在学生已经学习了单项式、多项式的有关概念的基础上学习的。在整式的加减教学中,我主要是从我班学生现有的认知水平和已掌握的知识出发。 第一步:在导入新课时,我首先将各种粉笔头混合在一起,要求学生从中挑出红色、黄色、白色的粉笔头进行分类;再让学生想想,在饭堂吃饭后洗的饭碗与汤匙的摆放,引导学生想一想东西这样摆放有什么好处。虽然这些事情看似与数学学习毫不相干,但适当的联系生活实际,从学生身边的生活实际出发却可以让学生自然而然地感受到了分类思想,为学习"合并同类项"的概念及方法打下了较好的基础。同时也使学生明白在现实生活中还蕴藏着大量的数学信息,从而引起学生学习数学的兴趣。 第二步:为了让学生建立起同类项的概念,我首先出一些单项式,其中也有一些单项式是有相同字母且相同字母的指数也相同的单项式,让学生把这些单项式进行分类,并引导学生观察其特点,找出其相同点:含有相同字母,相同字母的指数也相同的,我就告诉学生这样的项就叫做同类项,否则,不是。然后让学生举出一些同类项的例子,明确强调要成为同类项必须具备两个条件:一、所含字母要相同;二、相同字母的指数也必须要相同。所以在举同类项的例子的时候,只要让学生把系数改变,字母部分不变就可以了,这样通过学生的体验,很快的明白了同类项的意义并且能够准确地举出同类项的例子。 第三步:在学生对同类项的概念已经有了初步的体验后,然后提出问题"在多项式3x2-2y4-4xy-2+3+5x2-5y4+2xy中。1、这个多项式中有那些项?2、哪些项可以合并在一起?(特别强调常数项也是同类项,学生往往会不注意)为什么?这样,可以增强学生参与数学活动的意识,并从中体验到数学学习的过程是充满着乐趣的过程,在这个过程中逐步巩固了同类项的概念,从而提高数学课堂教学的实效性。 第四步:去括号的法则和注意的事项。 总的来说,整式的加减运算最基础的是合并同类项和去括号,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错的地方,并进行一定量的训练,学生就能有效的掌握好,也为今后学习同类根式的运算打下好的基础。 整式的加减教学反思二 整式的加减是承有理数的加减、乘、除、乘方的运算,续整式方程的一系列运算,是学生从小进入初中含有字母运算的变化,认知上有新的突破,在教法引入过渡中,有其奥妙学法教法值得反思。 一、注意与小学相关内容的衔接 整式及其相关概念和整式的加减运算,与列代数式表示数量关系密切联系,而同整式表示数量关系是建立在同字母表示数的基础上的,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的数量关系和简单方程。这些知识是学习本章的直接基础。因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。 二、加强与实际的联系 在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,加强了与实际的联系,无论是概念引出,还是运算法则的探讨,都是紧密结合实际问题展示的,在教学中,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学业生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。 三、类比数学习式,加强知识的内在联系,重视教学思想方法的渗透 整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,关于整式的运算与数的运算具有一致性,数的运算是式的运算的特殊情况,由学生已经学习了有理数的运算,能够灵活运用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。 四、抓住重点,加强练习,打好基础 整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。 整式的加减 篇四 教学内容 课本第66页至第68页。 教学目标 1.知识与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式化简。 2.过程与方法 经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。 3.情感态度与价值观 培养学生主动探究、合作交流的意识,严谨治学的学习态度。 重、难点与关键 1.重点:去括号法则,准确应用法则将整式化简。 2.难点:括号前面是“”号去括号时,括号内各项变号容易产生错误。 3.关键:准确理解去括号法则。 教具准备 投影仪。 教学过程 一、新授 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3): 在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 上面的式子、都带有括号,它们应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用分配律。学生练习、交流后,教师归纳: 利用分配律,可以去括号,合并同类项,得: 100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60 100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60 我们知道,化简带有括号的整式,首先应先去括号。 上面两式去括号部分变形分别为: +120(t-0.5)=+120t-60 -120(t-0.5)=-120+60 比较、两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3). 利用分配律,可以将式子中的括号去掉,得: +(x-3)=x-3 (括号没了,括号内的每一项都没有变号) -(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。 二、范例学习 例1.化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号。 解答过程按课本,可由学生口述,教师板书。 例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。 (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路。 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度。因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米。两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。 解答过程按课本。 去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号。为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。 三、巩固练习 1.课本第68页练习1、2题。 2.计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2. 5xy2 思路点拨:一般地,先去小括号,再去中括号。 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“”号时,括号连同括号前面的“”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“”变“”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。 五、作业布置 1.课本第71页习题2.2第2、3、5、8题。 2.选用课时作业设计。 第二课时作业设计 一、选择题: 1.下列各式化简正确的是( ). a.a-(2a-b+c)=-a-b+c b.(a+b)-(-b+c)=a+2b+c c.3a-5b-(2c-a)=2a-5b+2c d.a-(b+c)-d=a-b+c-d 2.下面去括号错误的是( ). a.a2-(a-b+c)=a2-a+b-c b.5+a-2(3a-5)=5+a-6a+5 c.3a- (3a2-2a)=3a-a2+ a d.a3-(a2-(-b)=a3-a2-b 3.将多项式2ab-4a2-5ab+9a2的同类项分别结合在一起错误的是( ). a.(2ab-5ab)+(-4a2+9a) b.(2ab-5ab)-(4a2-9a2) c.(2ab-5ab)+(9a2-4a2) d.(2ab-5ab)-(4a2+9a2) 二、化简下列各式: 4.2(-a3+2a2)-(4a2-3a+1). 5.(4a2-3a+1)-3(-a3+2a2). 6.3(a2-4a+3)-5(5a2-a+2). 7.3x2-5x-2( x- )+2x2. 答案: 一、1.c 2.b 3.d 二、4.-2a3+3a-1 5.3a3-2a2-3a+1 6.-22a2-7a-1 7.x2- x-3. 整式的加减教学设计 篇五 教学目标: 1、知识目标:使学生在掌握合并同类项的基础上,掌握去括号法则;正确地进行简单的整式加减运算。 2、能力目标:培养学生基本的运算技巧和能力。 3、情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。 教学重点、难点: 重点:去括号法则。 教学 难点:正确运用去括号法则,减少运算中的符号错误。 教学用具:多媒体 教学过程 : (一)、情景引入 1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133 你出生于8月份,你家有3口人 2、猜数游戏的数学原理常常与代数式的运算有关 3、知识梳理 -2x+3y-4z 共有 项,其中第三项是: 。 (1)写出 2a2b 的一个同类项: (2)已知4a2b3与a2mbn-1是同类项,则m= _,n=_. (二)实践应用, 拓展延 1、如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。 2、用分配律计算: (1) +(a-b+c) (2) -(a-b+c) 3、代数式运算的去括号法则: 括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号 4、顺口溜 去括号,看符号 是+号,不变号 是-号,全变号 5、辩一辩:指出下列各式是否正确?如果错误,请指出原因。 (1) a-(b-c+d) = a-b+c+d (2) -(a-b)+(-c+d)= a+b-c-d (3) a-3(b-2c)=a-3b+2c (4) x-2(-y-3z+1)=x-2y+6z 6、注意:(1)去括号时应将括号前面的符号连同括号一起去掉。 (2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号 (3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘。 7、练一练 整式的加减 篇六 教学目的 1、使学生在掌握合并同类项、去括号法则基础上进行运算。 2、使学生掌握整式加减的一般步骤,熟练进行运算。 教学分析 重点:运算。 难点:括号前是-号,去括号时,括号内的各项都要改变符号。 突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。 教学过程 一、复习 1、 叙述合并同类项法则。 2、 练习题:(用投影仪显示、学生完成) 3、 叙述去括号与添括号法则。 4、 练习题:(用投影仪显示、学生完成) 5、化简: y2+(x2+2xy-3y2)-(2x2-xy-2y2) 二、新授 1、引入 整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。 2、例题 例1 (P166例1)(学生自学后,教师按以下提示点拔即可) 求单项式5x2y,-2 x2y,2xy2,-4xy2的和。 提示:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。 解:(略,见教材P166) 练习:P167 1、2 例2(P166例2) 求3x2-6x+5与4x2-7x-6的和。 解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号) =3x2-6x+5+4x2-7x-6 (去括号) =7x2+x-1 (合并同类项) 练习:P167 3 例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误) 求2x2+xy+3y2与x2-xy+2y2的差。 解:(2x2+xy+3y2)-( x2-xy+2y2) =2x2+xy+3y2-x2+xy-2y2 =x2+2xy+y2 3、归纳整式加减的一般步骤。(最好由学生归纳) 整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。 三、练习 补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B(视时间是否足够而定) 四、小结(用投影仪板演) 1、文字叙述的整式加减,对每一个整式要添上括号。 2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。 五、作业 1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可适当减少些) 整式的加减教学设计 篇七 教学目标: 通过类比数的运算律得出同类项的概念,掌握合并同类项法则,会对同类项进行合并,发展类比的数学思想方法。 教学重点: 合并 同类项的法则及应用。 教学难点: 正确判断同类项,并同类项。 教学过程: 一、情境诱导 前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决: 在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?(请列出算式) 得到:100t+120×2.1t即:100t+252t 对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书) 二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。) 探究提纲: 1.填空: (1)2t+52t=( )t (2)3x2+2x2=( ) x2 (3)3ab2-5ab2=( )ab2 (4)4xy+6xy= 2. 如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗? 3. 仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。 三、展示归纳 1、抽有问题的学生逐题汇报,学生说教师板书。 2.发动学生进行评价、补充、完善,学生说老师改写, 3.教师最后揭示性质,并画龙点睛的强调。 四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。) 1.说出两组同类项 2.下列各组是同类项的是( ) A 2x3与3x2 B 12ax与8bx C x4与a4 D与-3 3.下列各题计算的结果对不对?如果不对,指出错在哪里? (1)3a+2b=5ab (2)5y2-2y2=3 (3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y 4.xmy与45 x3yn是同类项,则m=_,n=_。 5.计算: 课本P65练习1. 6. 课本习题2.2第1 五、课堂小结 通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调) 六、作业布置 课本习题2.2第5、6题。 整式的加减 篇八 第5课时教学内容: 教科书第6466页,2.2整式的加减:2.合并同类项。 教学目的和要求: 1.理解合并同类项的概念,掌握合并同类项的法则。 2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。 3.渗透分类和类比的思想方法。 4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。 教学重点和难点: 重点:正确合并同类项。 难点:找出同类项并正确的合并。教学方法:分层次教学,讲授、练习相结合。 教学过程: 一、复习引入: 为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问: 他们两次共买了多少本软面抄和多少支水笔? 若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元? (知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲。) 二、讲授新课: 1.合并同类项的定义: (学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所的结果都为(21x25y)元。 由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板书:合并同类项。) 2.例题: 例1:找出多项式3x2y4xy235x2y2xy25种的同类项,并合并同类项。 解原式= 根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。例2:下列各题合并同类项的结果对不对?若不对,请改正。 (1)2x23x2=5x4; (2)3x2y=5xy; (3)7x23x2=4; (4)9a2b9ba2=0。 (通过这一组题的训练,进一步熟悉法则。) 例3:合并下列多项式中的同类项: 2a2b3a2b0.5a2b; a3a2bab2a2bab2b3;5(xy)32(xy)42(xy)3(yx)4。 (用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(xy)、(xy)看作一个整体,特别注意(xy)2n=(yx)2n,n为正整数。) 解: 。 。 原式=5(xy)32(xy)42(xy)3(xy)4=3(xy)3(xy)4。 例4:求多项式3x24x2x2xx23x1的值,其中x=3。 解: ,当x=3时,原式= 。 试一试:把x3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便? (两种方法。通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,再求值,这样比较简便。) 6.课堂练习:课本p66:1,2,3。 三、课堂小结:要牢记法则,熟练正确的合并同类项,以防止2x23x2=5x4的错误。 从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项。四、课堂作业: 课本p71:1 合并同类项1.合并同类项的定义: 2.例: 例: 学生练习: 板书设计: 教学后记:数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念。通过独立思考、讨论交流等方式归纳出合并同类项的法则,通过例题教学、练习等方式巩固相关知识,发展应用部分。教学中应激发学生主动参与的学习动机,培养学生思维的灵活性,体现分类、类比等数学思想方法。 整式的加减 篇九 第6课时教学内容: 课本第66页至第68页。 教学目标 1.知识与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式化简。 2.过程与方法 经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。 3.情感态度与价值观 培养学生主动探究、合作交流的意识,严谨治学的学习态度。 重、难点与关键 1.重点:去括号法则,准确应用法则将整式化简。 2.难点:括号前面是“”号去括号时,括号内各项变号容易产生错误。 3.关键:准确理解去括号法则。 教学过程 一、新授 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3): 在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t0.5)千米,因此,这段铁路全长为 100t+120(t0.5)千米 冻土地段与非冻土地段相差 100t120(t0.5)千米 上面的式子、都带有括号,它们应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用分配律。学生练习、交流后,教师归纳: 利用分配律,可以去括号,合并同类项,得: 100t+120(t0.5)=100t+120t+120×(0.5)=220t60 100t120(t0.5)=100t120t120×(0.5)=20t+60 我们知道,化简带有括号的整式,首先应先去括号。 上面两式去括号部分变形分别为: +120(t0.5)=+120t60 120(t0.5)=120+60 比较、两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 特别地,+(x3)与(x3)可以分别看作1与1分别乘(x3). 利用分配律,可以将式子中的括号去掉,得: +(x3)=x3 (括号没了,括号内的每一项都没有变号) (x3)=x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。 二、范例学习 例1.化简下列各式: (1)8a+2b+(5ab); (2)(5a3b)3(a22b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中3(a22b),先把3乘到括号内,然后再去括号。 解答过程按课本,可由学生口述,教师板书。 例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。 (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路。 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度水流速度。因此,甲船速度为(50+a)千米/时,乙船速度为(50a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50a)千米。两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。 解答过程按课本。 去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号。为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。 三、巩固练习 1.课本第68页练习1、2题。 2.计算:5xy23xy2(4xy22x2y)+2x2yxy2. 5xy2 思路点拨:一般地,先去小括号,再去中括号。 四、课堂小结去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“”号时,括号连同括号前面的“”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“”变“”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“”号,全变号。 五、作业布置 1.课本第71页习题2.2第2、3、5、8题。板书设计: 去括号1.去括号的法则: 2.例: 例: 学生练习: 教学后记:通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。20