关于高考数学必考知识点归纳总结.docx
关于高考数学必考知识点归纳总结 1.进展集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进展求解. 2.在应用条件时,易A忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件? 5.你知道“否命题”与“命题的否认形式”的区分. 6.求解与函数有关的问题易忽视定义域优先的原则. 7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称. 8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域. 9.原函数在区间-a,a上单调递增,则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调 10.你娴熟地把握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示. 12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比拟函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种根本应用你把握了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需争论 15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 18.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”. 19.肯定值不等式的解法及其几何意义是什么? 20.解分式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类争论是关键”,留意解完之后要写上:“综上,原不等式的解集是”. 22.在求不等式的解集、定义域及值域时,其结果肯定要用集合或区间表示;不能用不等式表示. 23.两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即ab0,a0. 24.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进展争论了吗? 25.在“已知,求”的问题中,你在利用公式时留意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特别函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要留意步骤齐全,二要留意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 29.正角、负角、零角、象限角的概念你清晰吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边一样的角和相等的角的区分吗? 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 高三数学学问点归纳笔记 数列的定义 按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. 从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数一样而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. 在数列的定义中并没有规定数列中的数必需不同,因此,在同一数列中可以消失多个一样的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,.。 数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. 次序对于数列来讲是非常重要的,有几个一样的数,由于它们的排列次序不同,构成的数列就不是一个一样的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不管按怎样的次序排列都是同一个集合. 高三数学必考学问点大全 系统抽样 定义 当总体中的个体数较多时,采纳简洁随机抽样显得较为费事。这时,可将总体分成均衡的几个局部,然后根据预先定出的规章,从每一局部抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。 步骤 一般地,假设要沉着量为N的总体中抽取容量为n的样本,我们可以按以下步骤进展系统抽样: (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; (2)确定分段间隔k,对编号进展分段。当N/n(n是样本容量)是整数时,取k=N/n; (3)在第一段用简洁随机抽样确定第一个个体编号l(lk); (4)根据肯定的规章抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进展下去,直到猎取整个样本。