八年级下册数学第十六章二次根式教案与课时练中学教育中考中学教育初中教育.pdf
-
资源ID:95898949
资源大小:214.37KB
全文页数:3页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
八年级下册数学第十六章二次根式教案与课时练中学教育中考中学教育初中教育.pdf
学习必备 欢迎下载 八年级下册数学第十六章 二次根式 教案与课时练 教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。重点:二次根式的概念和基本性质 难点:二次根式的基本性质的灵活运用。教学过程:例 1(1)当 x 是怎样的实数时,2x在实数范围内有意义?(2)当 x 是怎样的实数时,2x在实数范围内有意义?(3)当 x 是怎样的实数时,3x在实数范围内有意义?归纳总结:nx:当 n 为奇数时,x0 时nx有意义 当 n 为偶数时,x 为任意实数时nx都有意义 1.求下列二次根式中字母k的取值范围:()1k-()22k ()321k+()242k+2.当x分别取下列值时,求二次根式1x-的值:()10 x=;()21x=;()31x=-.检测:求二次根式中x的取值范围:(1)4x (2)12x (3)25x (4)xx42 附加题:(5)22xx(6)42x(7)42xx 教学目的:1、理解二次根式的性质:(1)a(a0)是非负数;(2)(a)2=a(a0);(3)2a=a(a0)2、会运用其进行相关计算。重点:会运用a(a0)是非负数、(a)2=a(a0)、2a=a(a0)进行相关运算。难点:理解a(a0)是非负数、(a)2=a(a0)、2a=a(a0)。教学过程:阅读 P69-P71内容,完成两个探究填空,理解、识记两个公式。学习必备 欢迎下载 公式 1:公式 2:例 1 计算:(1)(5.1)2 (2)(52)2 练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例 2 化简:(1)16 (2)2)5(161 二次根式(2)(第二 三课时)教学目的:复习二次根式的概念、二次根式的基本性质a(a0)是非负数、(a)2=a(a0)、2a=a(a0),能熟练运用其进行相关计算。重点:二次根式的基本性质的应用。难点:二次根式的基本性质的应用。教学过程:一、选择 1、下列代数式中二次根式有总有意义的有()21,16,9a,12x,222 aa,x(0 x),23m。A、3 个 B、4 个 C、5 个 D、6 个 2、如果x35是二次根式,那么x应适合的条件是()A、x3 B、x3 C、x3 D、x3 3、化简:21(3)aa 的结果为()A、42a B、0 C、2a4 D、4 4、22)(化简的结果是(b )(A)2 (B)2 (C)2 (D)4 5、使代数式 8aa有意义的a的范围是()(A)0a (B)0a (C)0a (D)不存在 6、若01yxx,则20052006yx的值为:()(A)0 (B)1 (C)-1 (D)2 7、下列各式中一定成立的是()A、22(3.7)(3.7)B、22()mm 基本性质通过二次根式原概念和性质的探究提高数学探究能力和归纳表达能力重点二次根式的概念和基本性质难点二次根式的基本性质的灵活运用教学过程例当是怎样的实数时在实数范围内有意义当是怎样的实数时在实数范围内有列二次根式中字母的取值范围当分别取下列值时求二次根式的值检测求二次根式中的取值范围附加题教学目的理解二次根式的性质是非负数会运用其进行相关计算重点会运用是非负数进行相关运算难点理解是非负数教学过程阅读内时复习二次根式的概念二次根式的基本性质是非负数能熟练运用其进行相关计算重点二次根式的基本性质的应用难点二次根式的基本性质的应用教学过程一选择下列代数式中二次根式有总有意义的有个个个个如果是二次根式那么应学习必备 欢迎下载 C、2442xxx D、221517 8、如图,在线段长 x、y、z、w、p 中,是无理数的有()A、2 个 B、3 个 C、4 个 D、5 个 9、如果一个三角形的三边长分别为 1、k、3,化简|32|8136472kkk结果是()A、5 B、1 C、13 D、194k 二、填空 1、二次根式212xx有意义时的x的范围是 。2、若 x、y 都为实数,且15200752008xxy,则yx 2=_。3、在直角坐标系内,点 P(-2,6)到原点的距离为=。4、若实数 a、b、c 在数轴上的位置如图则化简|)(22accbbaa 。5若 ,则 a 的取值范围是 6若ABC 的三边长为 a,b,c,其中 a 和 b 满足 ,则 c 的取值范围是 7、实数在数轴上的位置如图示,化简|a-1|+2)2(a 。8若 ,则 的平方根为()A16 B16 C4 D2 9、代数式234x的最大值是_。10、若221x,则化简 1222xx=_。11、若代数式 2242aa的值是常数 2,则a的取值范围是_。12、求下列二次根式中字母 x 的取值范围:(1)12 x,(2)52x,(3)xx22,(4)11xx,(5)32x xx22.a b o c 02 aa09622bba22 a2)2(a基本性质通过二次根式原概念和性质的探究提高数学探究能力和归纳表达能力重点二次根式的概念和基本性质难点二次根式的基本性质的灵活运用教学过程例当是怎样的实数时在实数范围内有意义当是怎样的实数时在实数范围内有列二次根式中字母的取值范围当分别取下列值时求二次根式的值检测求二次根式中的取值范围附加题教学目的理解二次根式的性质是非负数会运用其进行相关计算重点会运用是非负数进行相关运算难点理解是非负数教学过程阅读内时复习二次根式的概念二次根式的基本性质是非负数能熟练运用其进行相关计算重点二次根式的基本性质的应用难点二次根式的基本性质的应用教学过程一选择下列代数式中二次根式有总有意义的有个个个个如果是二次根式那么应