公开课《倒数的认识》教学设计小学教育小学小学教育小学课件.pdf
-
资源ID:95946316
资源大小:315.41KB
全文页数:4页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
公开课《倒数的认识》教学设计小学教育小学小学教育小学课件.pdf
学习必备 欢迎下载 倒数的认识教学设计 教学目标:1、使学生理解倒数的意义,掌握求一个数的倒数的方法。2、培养学生观察、归纳、推理和概括的能力。3、培养学生严谨好学的学习态度。重点难点:重点:理解倒数的意义。难点:掌握求倒数的方法。教学过程:一、创设情境 1、创设问题情境,确定研究主题 师:在以前的学习过程中,天天与数打交道,并且总结出关于数的运算的一些非常重要的规律,比如:一个数和 1 相乘还得原数;一个数和 0 相乘结果还是0;一个不是 0 的数除以它本身结果得 1;这些运算中都有着非常稳定的规律,说明两个数的关系比较稳定。今天我们就来继续研究两个数的关系。出示:3883和 715157和 515和 12121和 请大家思考:每组中的两个数有怎样的关系?(生交流汇报)生 1:每组中都是一个真分数和一个假分数。生 2:两个数的分子和分母的位置正好颠倒了。生 3:它们的乘积都是1。师:看来大家已经透过表面现象发现了两个数的本质关系,即乘积都是 1。请大家逐个验证一下。2、学生举例,丰富体验。师:请大家自己举出这样的例子。生:3、提炼概念。师:通过刚才的研究,具有这种关系的数叫互为倒数。谁来具体说一说什么样的两个数叫做互为倒数?(根据学生的回答出示:乘积是 1 的两个数叫互为倒数。)二、加深理解 师:乘积是 1 的两个数叫互为倒数,在这个概念中你认为哪个词比较关键?为什么?自己思考后再和小组的同学交流。(小组交流后汇报)组 1:“互为”非常关键。师:“互为”是什么意思?组 1:“互为”是说一个数是另一个数的倒数,不能说某一个数是倒数。比如:3883和学习必备 欢迎下载 中,不能说83是倒数,应该说83是38的倒数,即要说清楚谁是谁的倒数。师:还可以怎么说?组 1:38是83的倒数。组 2:我们组认为“两个”这个词非常关键,必须是两个数。师:1214338,214338、成倒数关系吗?组 2:不成,因为我们研究的是两个数的关系,多了不行。组 3:我们组认为“乘积是 1”非常关键。如果乘积不是 1 的两个数就不能称为“互为倒数”。师:通过刚才的交流,大家已经找到了在这个概念中特别关键的部分,那就是“乘积是 1”、“两个数”、“互为”。师:老师给大家提一个问题:概念中的“两个数”有可能是两个怎样的数?你能举例说明吗?再次小组讨论。组 4:有可能是两个分数,也有可能是一个整数和一个小数,或者整数和分数,只要乘积是 1 就行。三、探究方法 1、探究找一个数的倒数的方法。(1)师:刚才同学们都举出了许多倒数的例子。现在老师来考考你们,看看谁能很快的找出互为倒数的两个数,并说说是怎样找的?出示例 1。生汇报结果:生 1:我找到了,53和35互为倒数,27和72互为倒数。我的方法是看这两个分数的分子和分母是不是颠倒了位置。生 2:我有补充,61和6也互为倒数。我是看两个数的乘积是否为1。师:说说你的理由。生 2:我们要判断两个数是否互为倒数,就要看它们是否符合倒数的概念,也就是两个数的乘积是否为 1,因为61和6的乘积也是 1,所以61和6也互为倒数。师:都回答的很好,看来你们对“倒数”理解得很透彻。那你更喜欢哪种方法呢?生 3:第一种方法,因为比较简便,一眼就可以判断。生 4:我也喜欢第一种,因为它比较快。师小结:看来大家都喜欢用直接观察的方法来判断,也就是看这两个分数的分子和分母是不是交换了位置。(2)师:同学们都会判断两个数是否互为倒数了吗?如果给你一个数,你能写出它的倒数吗?生齐说:能。师板书:117 生汇报方法:归纳推理和概括的能力培养学生严谨好学的学习态度重点难点重点理解倒数的意义难点掌握求倒数的方法教学过程一创设情境和创设问题情境确定研究主题师在以前的学习过程中天天与数打交道并且总结出关于数的运算的一些非常非常稳定的规律说明两个数的关系比较稳定今天我们就来继续研究两个数的关系出示和和和请大家思考每组中的两个数有怎的关系生交流汇报生每组中都是一个真分数和一个假分数生两个数的分子和分母的位置正好颠倒了生它们的验师请大家自己举出这的例子生提炼概念师通过刚才的研究具有这种关系的数叫互为倒数谁来具体说一说什么的两个数叫做互为倒数根据学生的回答出示乘积是的两个数叫互为倒数二加深理解师乘积是的两个数叫互为倒数在这个概学习必备 欢迎下载 生 1:我把分子、分母的位置交换一下,就写出了117的倒数711。师板书:711117分子、分母交换位置 师:你们的方法和他的一样吗?生齐答:一样。师:谁能写出 2 的倒数?并说说你的方法。生 2:2 的倒数是21。我是先把 2 写成分数形式12,再交换分子、分母的位置,就找出了 2 的倒数是21。师:你真聪明!能灵活运用知识。在找整数的倒数时,我们可以先把这个整数写成分数形式,再交换分子、分母的位置的方法找出这个整数的倒数。师板书:21122分子、分母交换位置 师:谁能说说 0.3 有没有倒数?有的话怎么写出它的倒数?生 3:有倒数,和 0.3 的乘积等于 1 的那个数就是它的倒数。在找小数的倒数时,可以先将小数化成分数,然后交换分子、分母的位置找出这个小数的倒数。师板书:3101033.0分子、分母交换位置 2、出示特例,深入理解。师:刚才我们找出了例 1 中互为倒数的两个数,还学会了找一个数的倒数的方法。请同学们看一看,例 1 中还有哪些数没有找到倒数?生:1 和 0。师:1 和 0 有没有倒数?如果有,是多少呢?请同学们讨论一下。小组汇报:(1)关于 1 的倒数。组 1:我们认为 1 有倒数,并且 1 的倒数还是 1。因为根据倒数的意义,111,所以说 1 的倒数还是 1。组 2:我们也同意他们组的看法。我们采用了刚才学习的求整数的倒数的方法,把 1 写成分数形式,再交换分子、分母的位置,得到数还是 1,所以说 1 的倒数是它本身。(2)关于 0 的倒数。组 3:我们组讨论的结果是:0 没有倒数,因为 0 乘以任何数都得 0,不可能得 1,不符合倒数的定义。组 4:我们组是这样想的:0 可以写成10的分数形式来找倒数,交换分子、分母的位置后,分子是 1,分母就成了 0,而分母不能为 0,所以 0 没有倒数。师小结:看来同学们通过自己的努力,不仅能找到答案,还能解释原因。1 和 0这两个数的倒数比较特殊:1 的倒数还是 1,0 没有倒数。归纳推理和概括的能力培养学生严谨好学的学习态度重点难点重点理解倒数的意义难点掌握求倒数的方法教学过程一创设情境和创设问题情境确定研究主题师在以前的学习过程中天天与数打交道并且总结出关于数的运算的一些非常非常稳定的规律说明两个数的关系比较稳定今天我们就来继续研究两个数的关系出示和和和请大家思考每组中的两个数有怎的关系生交流汇报生每组中都是一个真分数和一个假分数生两个数的分子和分母的位置正好颠倒了生它们的验师请大家自己举出这的例子生提炼概念师通过刚才的研究具有这种关系的数叫互为倒数谁来具体说一说什么的两个数叫做互为倒数根据学生的回答出示乘积是的两个数叫互为倒数二加深理解师乘积是的两个数叫互为倒数在这个概学习必备 欢迎下载 四、应用知识 1、完成“做一做”。先独立完成,再全班交流订正。2、合作练习。同桌两人中的一人任意说一个数,另一个同学说出这个数的倒数,然后交换进行。3、“练习六”第 2 题。先让学生判断对错,并说出理由。对于第(4)题“一个数的倒数一定比这个数小”,可以让学生进一步探究:什么数的倒数一定比这个数小?什么数的倒数一定比这个数大?什么数的倒数等于这个数?使学生通过讨论明确:大于 1 的假分数的倒数一定比它本身小,真分数的倒数一定比它本身大,1 的倒数是它本身。五、全课总结 师总结:同学们这节课学得很好,不仅知道了什么是倒数,还找出了求一个数的倒数的方法:把一个数的分子、分母交换位置就可以得到这个数的倒数,并且发现了两个特殊的数:1 的倒数是它本身,0 没有倒数。希望同学们在以后的学习中,能坚持善于观察、勤于动脑的好习惯,掌握更多的数学知识。板书设计:倒数的认识 3883和 715157和 515和 12121和 乘积是 1 的两个数互为倒数 找倒数的方法:分数:分子、分母交换位置 整数或小数:先化成分数,再交换分子、分母交换位置 “1”的倒数是“1”,“0”没有倒数 教学反思 课上我主要通过体验、研究、类推等活动,使学生理解倒数的意义。在活动中,我始终以学生为主体,鼓励他们独立总结出求倒数的方法,培养他们自主学习和发展创新的意识。归纳推理和概括的能力培养学生严谨好学的学习态度重点难点重点理解倒数的意义难点掌握求倒数的方法教学过程一创设情境和创设问题情境确定研究主题师在以前的学习过程中天天与数打交道并且总结出关于数的运算的一些非常非常稳定的规律说明两个数的关系比较稳定今天我们就来继续研究两个数的关系出示和和和请大家思考每组中的两个数有怎的关系生交流汇报生每组中都是一个真分数和一个假分数生两个数的分子和分母的位置正好颠倒了生它们的验师请大家自己举出这的例子生提炼概念师通过刚才的研究具有这种关系的数叫互为倒数谁来具体说一说什么的两个数叫做互为倒数根据学生的回答出示乘积是的两个数叫互为倒数二加深理解师乘积是的两个数叫互为倒数在这个概