欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中人教A全册数学选修2-1导学案抛物线的简单几何性质.doc

    • 资源ID:96229073       资源大小:369.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中人教A全册数学选修2-1导学案抛物线的简单几何性质.doc

    综合复习材料高中资料抛物线的简单几何性质课前预习学案一、 预习目标回顾抛物线的定义及抛物线的标准方程,预习抛物线的范围、对称性、顶点、离心率等几何性质二、 预习内容1、 复习回顾(1) 抛物线定义 叫作抛物线; 叫做抛物线的焦点。 叫做抛物线的准线图形方程焦点准线(2)抛物线的标准方程 l y P A M O F x Q B 图相同点 ;不同点 ;(3)回顾练习已知抛物线y22px的焦点为F,准线为l,过焦点F的弦与抛物线交于A、B两点,过A、B分别作APl,BQl,M为PQ的中点,求证:MFAB 在抛物线y22x上方有一点M(3,),P在抛物线上运动,|PM|=d1,P到准线的距离为d2,求当d1 +d2最小时,P的坐标。2、预习新知(1)根据抛物线图像探究抛物线的简单几何性质范围 : ;对称性: ;顶点: ;离心率: ;(2)自我检测:1已知点,直线:,点是直线上的动点,若过垂直于轴的直线与线段的垂直平分线交于点,则点所在曲线是( )圆 椭圆 双曲线 抛物线2设抛物线的焦点为,以为圆心,长为半径作一圆,与抛物线在轴上方交于,则的值为 ( )8 18 43过点的抛物线的标准方程是 焦点在上的抛物线的标准方程是 4抛物线的焦点为,为一定点,在抛物线上找一点,当为最小时,则点的坐标 ,当为最大时,则点的坐标 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点 疑惑内容       课内探究学案一、学习目标1掌握抛物线的范围、对称性、顶点、离心率等几何性质;2能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3在对抛物线几何性质的讨论中,注意数与形的结合与转化二、学习过程1、定义 ;2、标准方程 ;3、几何性质范围 : ;对称性: ;顶点: ;离心率: ;4、完成下表标准方程图形顶点对称轴焦点准线离心率 轴轴思考问题:抛物线是双曲线的一支吗?为什么?5、分析例题例1 已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置例3 过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切例4 已知抛物线与圆相交于两点,圆与轴正半轴交于点,直线是圆的切线,交抛物线与,并且切点在上(1)求三点的坐标(2)当两点到抛物线焦点距离和最大时,求直线的方程课后练习与提高1过抛物线的焦点作直线交抛物线于,两点,如果,那么=( B )(A)10 (B)8 (C)6 (D)42已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( B )(A)3 (B)4 (C)5 (D)63过抛物线的焦点作直线交抛物线于、两点,若线段、的长分别是、,则=( C )(A) (B) (C) (D)4过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 _ (答案: ) 5.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标(答案: , M到轴距离的最小值为)6根据下列条件,求抛物线的方程,并画出草图(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8(2)顶点在原点,焦点在y轴上,且过P(4,2)点(3)顶点在原点,焦点在y轴上,其上点P(m,3)到焦点距离为57过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2,B2,则A2FB2等于8抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程9以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长10有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?抛物线的简单几何性质教学目的:1掌握抛物线的范围、对称性、顶点、离心率等几何性质;2能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3在对抛物线几何性质的讨论中,注意数与形的结合与转化 教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:  “抛物线的简单几何性质”是课本第八章最后一节,它在全章占有重要的地位和作用本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一 对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论 已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为(或),则轴(或轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数 本节分两课时进行教学 第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3教学过程:一、复习引入: 1抛物线定义:图形方程焦点准线平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线 2抛物线的标准方程: 相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即 不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号 二、讲解新课:抛物线的几何性质1范围因为p0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸2对称性以y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴3顶点抛物线和它的轴的交点叫做抛物线的顶点在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点4离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示由抛物线的定义可知,e=1对于其它几种形式的方程,列表如下:标准方程图形顶点对称轴焦点准线离心率轴轴轴轴注意强调的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率 附:抛物线不存在渐近线的证明(反证法)假设抛物线y22px存在渐近线ymxn,A(x,y)为抛物线上一点,A0(x,y1)为渐近线上与A横坐标相同的点如图,则有和y1mxn 当m0时,若x,则当m0时,当x,则这与ymxn是抛物线y22px的渐近线矛盾,所以抛物线不存在渐近线三、讲解范例:例1 已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形分析:首先由已知点坐标代入方程,求参数p解:由题意,可设抛物线方程为,因为它过点,所以 ,即 因此,所求的抛物线方程为将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得x01234y022.83.54描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p值解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径设抛物线的标准方程是 (p0)由已知条件可得点A的坐标是(40,30),代入方程,得,即 所求的抛物线标准方程为例3 过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切分析:运用抛物线的定义和平面几何知识来证比较简捷证明:如图设AB的中点为E,过A、E、B分别向准线引垂线AD,EH,BC,垂足为D、H、C,则AFAD,BFBCABAFBFADBC2EH所以EH是以AB为直径的圆E的半径,且EHl,因而圆E和准线相切四、课堂练习:1过抛物线的焦点作直线交抛物线于,两点,如果,那么=( B )(A)10 (B)8 (C)6 (D)42已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( B )(A)3 (B)4 (C)5 (D)63过抛物线的焦点作直线交抛物线于、两点,若线段、的长分别是、,则=( C )(A) (B) (C) (D)4过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 _ (答案: ) 5.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标(答案: , M到轴距离的最小值为)五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等 六、课后作业:1根据下列条件,求抛物线的方程,并画出草图(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8(2)顶点在原点,焦点在y轴上,且过P(4,2)点(3)顶点在原点,焦点在y轴上,其上点P(m,3)到焦点距离为52过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2,B2,则A2FB2等于3抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程4以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长5有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?习题答案:1(1)y2±32x(2)x28y(3)x28y290°3x2±16 y45米七、板书设计(略)八、课后记: 11

    注意事项

    本文(高中人教A全册数学选修2-1导学案抛物线的简单几何性质.doc)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开