欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高三数学第二轮专题讲座复习求解函数解析式的几种常用方法.doc

    • 资源ID:96229283       资源大小:628KB        全文页数:5页
    • 资源格式: DOC        下载积分:14金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要14金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高三数学第二轮专题讲座复习求解函数解析式的几种常用方法.doc

    综合复习材料高中资料高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数fg(x)的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法典型题例示范讲解 例1 (1)已知函数f(x)满足f(logax)= (其中a>0,a1,x>0),求f(x)的表达式 (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(1)|=|f(0)|=1,求f(x)的表达式 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=logax(a>1,t>0;0<a<1,t<0),则x=at 因此f(t)= (atat)f(x)= (axax)(a>1,x>0;0<a<1,x<0)(2)由f(1)=a+b+c,f(1)=ab+c,f(0)=c得并且f(1)、f(1)、f(0)不能同时等于1或1,所以所求函数为 f(x)=2x21 或f(x)=2x2+1 或f(x)=x2x+1或f(x)=x2x1 或f(x)=x2+x+1 或f(x)=x2+x1 例2设f(x)为定义在R上的偶函数,当x1时,y=f(x)的图象是经过点(2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象 命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型 知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线 错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱 技巧与方法 合理进行分类,并运用待定系数法求函数表达式 解 (1)当x1时,设f(x)=x+b射线过点(2,0) 0=2+b即b=2,f(x)=x+2 (2)当1<x<1时,设f(x)=ax2+2 抛物线过点(1,1),1=a·(1)2+2,即a=1f(x)=x2+2 (3)当x1时,f(x)=x+2综上可知 f(x)=作图由读者来完成 例3已知f(2cosx)=cos2x+cosx,求f(x1) 解法一 (换元法)f(2cosx)=cos2xcosx=2cos2xcosx1令u=2cosx(1u3),则cosx=2uf(2cosx)=f(u)=2(2u)2(2u)1=2u27u+5(1u3)f(x1)=2(x1)27(x1)+5=2x211x+4(2x4)解法二 (配凑法)f(2cosx)=2cos2xcosx1=2(2cosx)27(2cosx)+5 f(x)=2x27x5(1x3),即f(x1)=2(x1)27(x1)+5=2x211x+14(2x4) 学生巩固练习 1 若函数f(x)=(x)在定义域内恒有ff(x)=x,则m等于( )A 3B C D 32 设函数y=f(x)的图象关于直线x=1对称,在x1时,f(x)=(x+1)21,则x>1时f(x)等于( )A f(x)=(x+3)21B f(x)=(x3)21C f(x)=(x3)2+1D f(x)=(x1)213 已知f(x)+2f()=3x,求f(x)的解析式为_ 4 已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_ 5 设二次函数f(x)满足f(x2)=f(x2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式 6 设f(x)是在(,+)上以4为周期的函数,且f(x)是偶函数,在区间2,3上时,f(x)=2(x3)2+4,求当x1,2时f(x)的解析式 若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0x2)的图象上,求这个矩形面积的最大值 7 动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示ABP的面积,求f(x)和g(x),并作出g(x)的简图 8 已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(1x1)是奇函数,又知y=f(x)在0,1上是一次函数,在1,4上是二次函数,且在x=2时,函数取得最小值,最小值为5 (1)证明 f(1)+f(4)=0;(2)试求y=f(x),x1,4的解析式;(3)试求y=f(x)在4,9上的解析式 参考答案 1 解析 f(x)= ff(x)=x,整理比较系数得m=3 答案 A2 解析 利用数形结合,x1时, f(x)=(x+1)21的对称轴为x=1,最小值为1,又y=f(x)关于x=1对称,故在x>1上,f(x)的对称轴为x=3且最小值为1 答案 B3 解析 由f(x)+2f()=3x知f()+2f(x)=3 由上面两式联立消去f()可得f(x)=x 答案 f(x)= x4 解析 f(x)=ax2+bx+c,f(0)=0,可知c=0 又f(x+1)=f(x)+x+1,a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1 故2a+b=b+1且a+b=1,解得a=,b=,f(x)=x2+x 答案 x2+x5 解 利用待定系数法,设f(x)=ax2+bx+c,然后找关于a、b、c的方程组求解,f(x)= 6 解 (1)设x1,2,则4x2,3,f(x)是偶函数,f(x)=f(x),又因为4是f(x)的周期,f(x)=f(x)=f(4x)=2(x1)2+4 (2)设x0,1,则2x+23,f(x)=f(x+2)=2(x1)2+4,又由(1)可知x0,2时,f(x)=2(x1)2+4,设A、B坐标分别为(1t,0),(1+t,0)(0t1,则|AB|=2t,|AD|=2t2+4,S矩形=2t(2t2+4)=4t(2t2),令S矩=S,=2t2(2t2)·(2t2)()3=,当且仅当2t2=2t2,即t=时取等号 S2即S,Smax= 7 解 (1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由RtABD可得PA=;当P点在CD上运动时,由RtADP易得PA=;当P点在DA上运动时,PA=4x,故f(x)的表达式为 f(x)=(2)由于P点在折线ABCD上不同位置时,ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解 如原题图,当P在线段AB上时,ABP的面积S=0;当P在BC上时,即1x2时,SABP=AB·BP=(x1);当P在CD上时,即2x3时,SABP=·1·1=;当P在DA上时,即3x4时,SABP=(4x) 故g(x)=8 (1)证明 y=f(x)是以5为周期的周期函数,f(4)=f(45)=f(1),又y=f(x)(1x1)是奇函数,f(1)=f(1)=f(4),f(1)+f(4)=0 (2)解 当x1,4时,由题意,可设f(x)=a(x2)25(a0),由f(1)+f(4)=0得a(12)25+a(42)25=0,解得a=2,f(x)=2(x2)25(1x4) (3)解 y=f(x)(1x1)是奇函数,f(0)=f(0),f(0)=0,又y=f(x) (0x1)是一次函数,可设f(x)=kx(0x1),f(1)=2(12)25=3, f(1)=k·1=k,k=3 当0x1时,f(x)=3x,当1x0时,f(x)=3x,当4x6时,1x51,f(x)=f(x5)=3(x5)=3x+15,当6x9时,1x54,f(x)=f(x5)=2(x5)225=2(x7)25 f(x)= 5

    注意事项

    本文(高三数学第二轮专题讲座复习求解函数解析式的几种常用方法.doc)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开