欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考数学一轮复习热点难点精讲精析8.4椭圆.doc

    • 资源ID:96229367       资源大小:644.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:17金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要17金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学一轮复习热点难点精讲精析8.4椭圆.doc

    综合复习材料高中资料高考一轮复习热点难点精讲精析:8.4椭 圆(一)椭圆的定义以及标准方程相关链接1.椭圆定义的应用利用椭圆的定义解题时,一方面要注意常数2a>|F1F2|这一条件;另一方面要注意由椭圆上任意一点与两个焦点所组成的“焦点三角形”中的数量关系.2.椭圆的标准方程(1)当已知椭圆的焦点在x轴上时,其标准方程为+=1(a>b>0);当已知椭圆的焦点在y轴上时,其标准方程为+=1(a>b>0);(2)当已知椭圆的焦点不明确而又无法确定时,其标准方程可设为+=1(m>0,n>0,mn),这样可避免讨论和复杂的计算;也可设为Ax2+By2=1(A>0,B>0,AB)这种形式,在解题时更简便.求椭圆的标准方程主要有定义、待定系数法,有时还可根据条件用代入法。用待定系数法求椭圆方程的一般步骤是:(1)作判断:根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能。(2)设方程:根据上述判断设方程。(3)找关系:根据已知条件,建立关于的方程组。(4)得方程:解方程组,将解代入所设方程,即为所求。注:当椭圆的焦点位置不明确而无法确定其标准方程时,可设,可以避免讨论和繁杂的计算,也可以设为,这种形式在解题时更简便。例题解析例1已知F1、F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=_;方法诠释:注意|AF1|+|AF2|=10,|BF1|+|BF2|=10,且|AF1|+|F1B|=|AB|,再结合题设即可得出结论;解析:由椭圆的定义及椭圆的标准方程得:|AF1|+|AF2|=10,|BF1|+|BF2|=10,又已知|F2A|+|F2B|=12,所以|AB|=|AF1|+|BF1|=8.答案:8例2已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程。方法诠释:设椭圆方程为根据题意求得方程。解析:设所求的椭圆方程为,由已知条件得故所求方程为方法指导:1.在解决椭圆上的点到焦点的距离问题时,经常联想到椭圆的定义,即利用椭圆上的点到两焦点距离之和等于2a求解;2.在求椭圆方程时,若已知椭圆上的点到两焦点的距离,可先求出椭圆长轴长,再想法求短轴长,从而得出方程;若已知点的坐标,可先设出椭圆的标准方程,再利用待定系数法求解;当椭圆的焦点不确定时,应考虑焦点在x轴、在y轴两种情形,无论哪种情形,始终有a>b>0.(二)椭圆的几何性质相关链接1.椭圆几何性质中的不等关系椭圆的几何性质涉及一些不等关系,例如对椭圆,有等,在求与椭圆有关的一些量的范围,或者求这些量的最大值时,经常用到这些不等关系。2.利用椭圆几何性质应注意的问题求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.3.求椭圆的离心率问题的一般思路求椭圆的离心率时,一般是依据题设得出一个关于a、b、c的等式(或不等式),利用a2=b2+c2消去b,即可求得离心率或离心率的范围.或者是:应先将e用有关的一些量表示出来,再利用其中的一些关系构造出关于e的等式或不等式,从而求出e的值或范围。离心率e与的关系:注:椭圆离心率的范围:0<e<1.例题解析例已知椭圆的长轴、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。(1) 求椭圆的离心率;(2) 设Q是椭圆上任意一点,、分别是左、右焦点,求的取值范围。思路解析:由与是共线向量可知ABOM,从而可得关于的等量关系,从而求得离心率;若求的取值范围,即需求cos的范围,用余弦定理即可。解答:(1)设(-c,0),则(3) 设|=,|=,=,+=2,|=2(4)注:熟练掌握椭圆定义及性质并且其解决相应问题,在求离心率时,除已知等式外,还需一个关于的等式,即可求得。(三)直线与椭圆的位置关系相关链接1直线与椭圆位置关系的判定把椭圆方程与直线方程y=kx+b联立消去y,整理成形如的形式,对此一元二次方程有:(1)>0,直线与椭圆相交,有两个公共点;(2)=0,直线与椭圆相切,有一个公共点;(3)<0,直线与椭圆相离,无公共点。故直线与椭圆位置关系判断的步骤:第一步:联立直线方程与椭圆方程;第二步:消元得出关于x(或y)的一元二次方程;第三步:当0时,直线与椭圆相交;当=0时,直线与椭圆相切;当0时,直线与椭圆相离.2直线被椭圆截得的张长公式,设直线与椭圆交于两点,则注:解决直线与椭圆的位置关系问题时常利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决。3.直线与椭圆相交时的常见问题的处理方法注:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式. 例题解析 例1中心在原点,一个焦点为F1(0,)的椭圆截直线所得弦的中点横坐标为,求椭圆的方程思路解析:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F1(0,)知,c=,最后解关于a、b的方程组即可解答:设椭圆的标准方程为,由F1(0,)得把直线方程代入椭圆方程整理得:。设弦的两个端点为,则由根与系数的关系得: ,又AB的中点横坐标为,与方程联立可解出故所求椭圆的方程为:。例2已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长解答:a=3,b=1,c=2,则F(-2,0)。由题意知:与联立消去y得:。设A(、B(,则是上面方程的二实根,由违达定理,又因为A、B、F都是直线上的点,所以|AB|=(四)与椭圆有关的综合问题例如图,已知椭圆C: 经过椭圆C的右焦点F且斜率为k(k0)有直线交椭圆C于A、B两点,M为线段AB中点,设O为椭圆的中心,射线OM交椭圆于N点(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;(2)若,求实数k的取值范围。思路解析:第(1)问为存在性问题,可先假设存在,然后由可知M点为ON中点,用坐标表示相关量可求。第(2)问用坐标表示向量数量积,列式求解即可。解答:椭圆C: ,直线AB的方程为:y=k(x-m).由消去y得设,则则若存在k,使总成立,M为线段AB的中点,M为ON的中点,即N点的坐标为。由N点在椭圆上,则即即故存在k=±1,使对任意m>0,总有成立。(2)由得即注:探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神。因此越来越受到高考命题者的青睐。(1)本题第(1)问是一是否存在性问题,实质上是探索结论的开放性问题。相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐。解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性。探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素。(2)第(2)问是参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力。在历年高考中占有较稳定的比重。

    注意事项

    本文(高考数学一轮复习热点难点精讲精析8.4椭圆.doc)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开