高中人教A数学导学案和教案选修2-21.2.2基本初等函数的导数公式及导数的运算法则.doc
-
资源ID:96229649
资源大小:331KB
全文页数:9页
- 资源格式: DOC
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中人教A数学导学案和教案选修2-21.2.2基本初等函数的导数公式及导数的运算法则.doc
综合复习材料高中资料§1.2.2基本初等函数的导数公式及导数的运算法则课前预习学案一 预习目标1熟练掌握基本初等函数的导数公式; 2掌握导数的四则运算法则;3能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二 预习内容1基本初等函数的导数公式表函数导数 2.导数的运算法则导数运算法则123(2)推论: (常数与函数的积的导数,等于: )三 提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一 学习目标1熟练掌握基本初等函数的导数公式; 2掌握导数的四则运算法则;3能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二 学习过程 (一)。【复习回顾】复习五种常见函数、的导数公式填写下表函数导数(二)。【提出问题,展示目标】我们知道,函数的导数为,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。减。乘。除的导数呢?这一节我们就来解决这个问题。(三)、【合作探究】1(1)分四组对比记忆基本初等函数的导数公式表函数导数(2)根据基本初等函数的导数公式,求下列函数的导数(1)与(2)与2.(1)记忆导数的运算法则,比较积法则与商法则的相同点与不同点导数运算法则123推论: (常数与函数的积的导数,等于: )提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数(1)(2);(3);(4);【点评】 求导数是在定义域内实行的 求较复杂的函数积、商的导数,必须细心、耐心(四)典例精讲例1:假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:解:变式训练1:如果上式中某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的随着水纯净度的提高,所需净化费用不断增加已知将1吨水净化到纯净度为时所需费用(单位:元)为求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)分析:净化费用的瞬时变化率就是:解:比较上述运算结果,你有什么发现? 三反思总结:(1)分四组写出基本初等函数的导数公式表:(2)导数的运算法则:四当堂检测1求下列函数的导数(1) (2)(3) (4)2.求下列函数的导数(1) (2)课后练习与提高1已知函数在处的导数为3,则的解析式可能为:A B C D2函数的图像与直线相切,则A B C D 1 3.设函数在点(1,1)处的切线与轴的交点横坐标为,则A B C D 14.曲线在点(0,1)处的切线方程为-5.在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线在点P处的切线的斜率为2,则P点的坐标为-6.已知函数的图像过点P(0,2),且在点处的切线方程为,求函数的解析式。课后练习与提高答案:1.C 2.B 3.B 4. 5. (-2,15)6.由函数的图像过点P(0,2),知,所以,由在点处的切线方程为知:所以解得:故所求函数的解析式是§1.2.2基本初等函数的导数公式及导数的运算法则 一教学目标:1熟练掌握基本初等函数的导数公式; 2掌握导数的四则运算法则;3能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点: 基本初等函数的导数公式和导数的四则运算法则的应用三教学过程:(一)创设情景复习五种常见函数、的导数公式及应用函数导数(二)新课讲授1(1)基本初等函数的导数公式表函数导数(2)根据基本初等函数的导数公式,求下列函数的导数(1)与 (2)与2.(1)导数的运算法则导数运算法则123推论: (常数与函数的积的导数,等于常数乘函数的导数)提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数(1)(2);(3);(4);【点评】 求导数是在定义域内实行的 求较复杂的函数积、商的导数,必须细心、耐心四典例精讲例1假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是函数关系的导数。解:根据基本初等函数导数公式表,有所以(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨变式训练1:如果上式中某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:当时,根据基本初等函数导数公式和求导法则,有所以(元/年)因此,在第10个年头,这种商品的价格约为0.4元/年的速度上涨例2日常生活中的饮水通常是经过净化的随着水纯净度的提高,所需净化费用不断增加已知将1吨水净化到纯净度为时所需费用(单位:元)为求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)解:净化费用的瞬时变化率就是净化费用函数的导数(1) 因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨(2) 因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨 点评 函数在某点处导数的大小表示函数在此点附近变化的快慢由上述计算可知,它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快五课堂练习做导学案的当堂检测六课堂小结(1)基本初等函数的导数公式表(2)导数的运算法则七布置作业八教学后记 9