高中人教A全册数学必修5教案1.1.3解三角形的进一步讨论.doc
-
资源ID:96229791
资源大小:137KB
全文页数:4页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中人教A全册数学必修5教案1.1.3解三角形的进一步讨论.doc
综合复习材料高中资料113解三角形的进一步讨论(一)教学目标1知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。(二)教学重、难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。难点:正、余弦定理与三角形的有关性质的综合运用。(三)学法与教学用具学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。教学用具:教学多媒体设备(四)教学设想创设情景思考:在ABC中,已知,解三角形。(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。探索研究例1在ABC中,已知,讨论三角形解的情况分析:先由可进一步求出B;则从而1当A为钝角或直角时,必须才能有且只有一解;否则无解。2当A为锐角时,如果,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且时,有两解;其它情况时则只有一解或无解。随堂练习1(1)在ABC中,已知,试判断此三角形的解的情况。(2)在ABC中,若,则符合题意的b的值有_个。(3)在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3)例2在ABC中,已知,判断ABC的类型。分析:由余弦定理可知(注意:)解:,即,。随堂练习2(1)在ABC中,已知,判断ABC的类型。 (2)已知ABC满足条件,判断ABC的类型。 (答案:(1);(2)ABC是等腰或直角三角形)例3在ABC中,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而随堂练习3(1)在ABC中,若,且此三角形的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C(答案:(1)或;(2)课堂小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用。(五)评价设计(课时作业)(1)在ABC中,已知,试判断此三角形的解的情况。(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。(3)在ABC中,判断ABC的形状。(4)三角形的两边分别为3cm,5cm,它们所夹的角的余弦为方程的根,求这个三角形的面积。12