欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc

    • 资源ID:96229929       资源大小:652.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:14金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要14金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc

    综合复习材料高中资料高三数学第二轮专题讲座复习:对集合的理解及集合思想应用的问题高考要求集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用 本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用 重难点归纳 1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合x|xP,要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题 2 注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A两种可能,此时应分类讨论 典型题例示范讲解 例1设A=(x,y)|y2x1=0,B=(x,y)|4x2+2x2y+5=0,C=(x,y)|y=kx+b,是否存在k、bN,使得(AB)C=,证明此结论 命题意图 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 知识依托 解决此题的闪光点是将条件(AB)C=转化为AC=且BC=,这样难度就降低了 错解分析 此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手 技巧与方法 由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、kN,进而可得值 解 (AB)C=,AC=且BC= k2x2+(2bk1)x+b21=0AC= 1=(2bk1)24k2(b21)<0 4k24bk+1<0,此不等式有解,其充要条件是16b216>0, 即 b2>1 4x2+(22k)x+(5+2b)=0BC=,2=(1k)24(52b)<0 k22k+8b19<0, 从而8b<20,即 b<2 5 由及bN,得b=2代入由1<0和2<0组成的不等式组,得k=1,故存在自然数k=1,b=2,使得(AB)C= 例2 向50名学生调查对A、B两事件的态度,有如下结果 赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人 问对A、B都赞成的学生和都不赞成的学生各有多少人?命题意图 在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握 本题主要强化学生的这种能力 知识依托 解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来 错解分析 本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索 技巧与方法 画出韦恩图,形象地表示出各数量关系间的联系 解 赞成A的人数为50×=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B 设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30x,赞成B而不赞成A的人数为33x 依题意(30x)+(33x)+x+(+1)=50,解得x=21 所以对A、B都赞成的同学有21人,都不赞成的有8人 例3已知集合A=(x,y)|x2+mxy+2=0,B=(x,y)|xy+1=0,且0x2,如果AB,求实数m的取值范围 解 由得x2+(m1)x+1=0AB方程在区间0,2上至少有一个实数解 首先,由=(m1)240,得m3或m1,当m3时,由x1+x2=(m1)0及x1x2=1>0知,方程只有负根,不符合要求 当m1时,由x1+x2=(m1)>0及x1x2=1>0知,方程只有正根,且必有一根在区间(0,1内,从而方程至少有一个根在区间0,2内 故所求m的取值范围是m1 学生巩固练习 1 集合M=x|x=,kZ,N=x|x=,kZ,则( )A M=NB MNC MND MN=2 已知集合A=x|2x7,B=x|m+1<x<2m1且B,若AB=A,则( )A 3m4B 3<m<4C 2<m<4D 2<m43 已知集合A=xR|ax23x+2=0,aR,若A中元素至多有1个,则a的取值范围是_ 4 x、yR,A=(x,y)|x2+y2=1,B=(x,y)| =1,a>0,b>0,当AB只有一个元素时,a,b的关系式是_ 5 集合A=x|x2ax+a219=0,B=x|log2(x25x+8)=1,C=x|x2+2x8=0,求当a取什么实数时,AB 和AC=同时成立 6 已知an是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A=(an,)|nN*,B=(x,y)| x2y2=1,x,yR 试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明 (1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;(2)AB至多有一个元素;(3)当a10时,一定有AB 7 已知集合A=z|z2|2,zC,集合B=w|w=zi+b,bR,当AB=B时,求b的值 8 设f(x)=x2+px+q,A=x|x=f(x),B=x|ff(x)=x (1)求证 AB;(2)如果A=1,3,求B 参考答案 1 解析 对M将k分成两类 k=2n或k=2n+1(nZ),M=x|x=n+,nZx|x=n+,nZ,对N将k分成四类,k=4n或k=4n+1,k=4n+2,k=4n+3(nZ),N=x|x=n+,nZx|x=n+,nZx|x=n+,nZx|x=n+,nZ 答案 C2 解析 AB=A,BA,又B,即2m4 答案 D3 a=0或a4 解析 由AB只有1个交点知,圆x2+y2=1与直线=1相切,则1=,即ab= 答案 ab=5 解 log2(x25x+8)=1,由此得x25x+8=2,B=2,3 由x2+2x8=0,C=2,4,又AC=,2和4都不是关于x的方程x2ax+a219=0的解,而AB ,即AB,3是关于x的方程x2ax+a219=0的解,可得a=5或a=2 当a=5时,得A=2,3,AC=2,这与AC=不符合,所以a=5(舍去);当a=2时,可以求得A=3,5,符合AC=,AB ,a=2 6 解 (1)正确 在等差数列an中,Sn=,则(a1+an),这表明点(an,)的坐标适合方程y(x+a1),于是点(an, )均在直线y=x+a1上 (2)正确 设(x,y)AB,则(x,y)中的坐标x,y应是方程组的解,由方程组消去y得 2a1x+a12=4(*),当a1=0时,方程(*)无解,此时AB=;当a10时,方程(*)只有一个解x=,此时,方程组也只有一解,故上述方程组至多有一解 AB至多有一个元素 (3)不正确 取a1=1,d=1,对一切的xN*,有an=a1+(n1)d=n>0, >0,这时集合A中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=10 如果AB,那么据(2)的结论,AB中至多有一个元素(x0,y0),而x0=0,y0=0,这样的(x0,y0)A,产生矛盾,故a1=1,d=1时AB=,所以a10时,一定有AB是不正确的 7 解 由w=zi+b得z=,zA,|z2|2,代入得|2|2,化简得|w(b+i)|1 集合A、B在复平面内对应的点的集合是两个圆面,集合A表示以点(2,0)为圆心,半径为2的圆面,集合B表示以点(b,1)为圆心,半径为1的圆面 又AB=B,即BA,两圆内含 因此21,即(b2)20,b=2 8 (1)证明 设x0是集合A中的任一元素,即有x0A A=x|x=f(x),x0=f(x0) 即有ff(x0)=f(x0)=x0,x0B,故AB (2)证明 A=1,3=x|x2+px+q=x,方程x2+(p1)x+q=0有两根1和3,应用韦达定理,得f(x)=x2x3 于是集合B的元素是方程ff(x)=x,也即(x2x3)2(x2x3)3=x(*)的根 将方程(*)变形,得(x2x3)2x2=0解得x=1,3, 故B=,1,3 5

    注意事项

    本文(高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开