欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2024届新高考数学一轮复习配套练习专题8.8 立体几何综合问题 (新教材新高考)(练)含答案.docx

    • 资源ID:96280900       资源大小:2.97MB        全文页数:74页
    • 资源格式: DOCX        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2024届新高考数学一轮复习配套练习专题8.8 立体几何综合问题 (新教材新高考)(练)含答案.docx

    2024届新高考数学一轮复习配套练习专题8.8 立体几何综合问题练基础1.(2020·上海市建平中学月考)已知是空间两个不同的平面,则“平面上存在不共线的三点到平面的距离相等”是“”的( )A充分非必要条件B必要非充分条件C充要条件D非充分非必要条件2(2020·全国高三专题练习(文)将地球近似看作球体.设地球表面某地正午太阳高度角为,为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),为该地的纬度值,如图已知太阳每年直射范围在南北回归线之间,即北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A北纬B南纬C北纬D南纬3.(湖北高考真题)算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为( )ABCD4.(2021·永州市第四中学高三月考)农历五月初五是端午节这一天民间有吃粽子的习俗,据说是为了纪念战国时期楚国大臣、爱国诗人屈原如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到六面体的粽子如果粽子的馅是六面体内的一个球状物,则粽子馅的最大体积为_5(2021·四川省大竹中学高二期中(理)在正方体中,点E是棱BC的中点,点F是棱CD上的动点,当_时,平面6(2021·浙江高二期末)如图在四棱锥中,平面,E是直线上的一个动点,则与平面所成角的最大值为_7.(2021·浙江高二期中)在四棱锥中,四边形为正方形,平面平面,点为上的动点,平面与平面所成的二面角为(为锐角),则当取最小值时,三棱锥的体积为_.8.(2021·全国高三其他模拟(理)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式定理解法函数方程常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V棱数E面数F之间总满足数量关系,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为_;顶点的个数为_.9(2020·四川泸县五中高二开学考试(理)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.10(2021·济南市历城第二中学开学考试)在四棱锥中,侧面底面,底面为直角梯形,/,为的中点()求证:PA/平面BEF;()若PC与AB所成角为,求的长;()在()的条件下,求二面角F-BE-A的余弦值练提升TIDHNEG1(2021·福建其他)九章算术中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,为中点,为内的动点(含边界),且.当在上时,_;点的轨迹的长度为_.2(2020·福建省福州第一中学高三期末(理)分别为菱形的边的中点,将菱形沿对角线折起,使点不在平面内,则在翻折过程中,以下命题正确的是_.(写出所有正确命题的序号) 平面;异面直线与所成的角为定值;在二面角逐渐渐变小的过程中,三棱锥的外接球半径先变小后变大;若存在某个位程,使得直线与直线垂直,则的取值范围是.3(2020·全国高三专题练习(文)现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织英国足球协会,并统一了足球规则人们称这一天是现代足球的诞生日如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为_个,该足球表面的棱为_条4(2021·江苏南京市第二十九中学高三月考)在正三棱柱中,点满足,其中,.(1)当时,三棱锥的体积为_.(2)当时,存在点,使得平面,则的取值集合为_.5.(2021·进贤县第一中学高二月考(理)如图,在棱长为 1 的正方体中,点是的中点,动点在底面正方形内(不包括边界),若平面,则长度的取值范围是_. 6(2021·贵州贵阳一中高三月考(文)如图甲为直角三角形ABC,B=,AB=4,BC=,且BD为斜边AC上的高,将三角形ABD沿BD折起,得到图乙的四面体A-BCD,E,F分别在DC与BC上,且满足,H,G分别为AB与AD的中点.(1)证明:直线EG与FH相交,且交点在直线AC上;(2)当四面体A-BCD的体积最大时,求四边形EFHG的面积.7(2021·山东高三二模)如图所示,平面五边形ABCDE中,四边形ABCD为直角梯形,B=90°且ADBC,若AD=2BC=2,AB=,ADE是以AD为斜边的等腰直角三角形,现将ADE沿AD折起,连接EB,EC得如图的几何体图 图(1)若点M是ED的中点,求证:CM平面ABE;(2)若EC=2,在棱EB上是否存在点F,使得二面角E-AD-F的大小为60°?若存在,求出点F的位置;若不存在,请说明理由8(2021·福建其他)已知圆柱底面半径为1,高为,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.(1)求曲线的长度;(2)当时,求点到平面的距离.9(2020·江西上高二中高二月考(理)如图,四棱锥中,(1)求证:平面平面;(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由10(2021·天津市滨海新区塘沽第一中学高三月考)已知如图,四边形为矩形,为梯形,平面平面,(1)若为中点,求证:平面;(2)求直线与平面所成角的正弦值;(3)在线段上是否存在一点(除去端点),使得平面与平面所成锐二面角的大小为?若存在,请说明点的位置;若不存在,请说明理由练真题TIDHNEG1(2020·全国高考真题(理)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )ABCD2(2018·浙江高考真题)已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则( )ABCD3(2019·全国高考真题(文)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有_个面,其棱长为_4(2018·天津高考真题(理)如图,且AD=2BC,,且EG=AD,且CD=2FG,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.5.(2021·全国高考真题(理)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,D为棱上的点 (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?6.(2021·全国高考真题(理)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,D为棱上的点 (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?专题8.8 立体几何综合问题练基础1.(2020·上海市建平中学月考)已知是空间两个不同的平面,则“平面上存在不共线的三点到平面的距离相等”是“”的( )A充分非必要条件B必要非充分条件C充要条件D非充分非必要条件【答案】B【解析】已知是空间两个不同的平面,若平面内存在不共线的三点到平面的距离相等,可得或相交,反之,若,则平面上存在不共线的三点到平面的距离相等;所以“平面上存在不共线的三点到平面的距离相等”是“”的必要不充分条件故选:B.2(2020·全国高三专题练习(文)将地球近似看作球体.设地球表面某地正午太阳高度角为,为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),为该地的纬度值,如图已知太阳每年直射范围在南北回归线之间,即北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A北纬B南纬C北纬D南纬【答案】D【解析】首先根据题意理解太阳高度角、该地纬度、太阳直射纬度的概念,然后由太阳高度角可得结果.【详解】由题可知,天安门广场的太阳高度角,由华表的高和影长相等可知,所以.所以该天太阳直射纬度为南纬,故选:D.3.(湖北高考真题)算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为( )ABCD【答案】B【解析】设圆锥底面圆的半径为,高为,依题意,所以,即的近似值为,故选B.4.(2021·永州市第四中学高三月考)农历五月初五是端午节这一天民间有吃粽子的习俗,据说是为了纪念战国时期楚国大臣、爱国诗人屈原如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到六面体的粽子如果粽子的馅是六面体内的一个球状物,则粽子馅的最大体积为_【答案】【解析】易知球与六个面都相切时体积最大,此时球心到六个面的距离即为球的半径,进而利用等体积法即可解得.【详解】六面体每个面都为边长是1的正三角形,面积为,要使球状的馅的体积最大,则球与六面体的各面相切如图,连接球心O与五个顶点,把六面体分成六个小三棱锥设球的半径为R(O到六个面的距离,图里仅标记),则六面体的体积可表示为易知,又六面体可以看成由两个底面积为,高的正四面体合成的,故其体积又可表示为,因此,解得故粽子馅的最大体积为故答案为:.5(2021·四川省大竹中学高二期中(理)在正方体中,点E是棱BC的中点,点F是棱CD上的动点,当_时,平面【答案】【解析】首先如图建立空间直角坐标系,利用垂直关系,转化为坐标运算求解.【详解】如图,建立空间直角坐标系,设棱长为, 若平面,则,即,解得:,所以 故答案为:6(2021·浙江高二期末)如图在四棱锥中,平面,E是直线上的一个动点,则与平面所成角的最大值为_【答案】.【解析】建立空间直角坐标系如图,先求得平面的法向量,再设,则,设与平面所成的角为,则,由此可得,进而可得结果.【详解】依题意,以为原点,所在的直线为轴建立空间直角坐标系,如图所示.则,因为,所以设,设平面的一个法向量为,由得,取,得,设,则,设与平面所成的角为,则,又,所以,当即点与点重合时,与平面所成的角有最大值为.故答案为:.7.(2021·浙江高二期中)在四棱锥中,四边形为正方形,平面平面,点为上的动点,平面与平面所成的二面角为(为锐角),则当取最小值时,三棱锥的体积为_.【答案】【解析】建立空间直角坐标系,利用向量法求得当最小时的长,由此求得此时三棱锥的体积.【详解】依题意可知两两相互垂直,以为原点建立如图所示空间直角坐标系,平面的法向量为,其中,设平面的法向量为,则,令,则,所以,依题意,由于,所以当时,取得最大值,取得最小值.此时,.故答案为:8.(2021·全国高三其他模拟(理)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式定理解法函数方程常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V棱数E面数F之间总满足数量关系,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为_;顶点的个数为_.【答案】 【解析】根据某凸32面体,12个面是五边形,20个面是六边形,求得该32面体的棱数,然后根据顶点数V棱数E面数F之间总满足数量关系求解.【详解】因为某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数:;因为顶点数V棱数E面数F之间总满足数量关系,设顶点的个数为,则,解得,故答案为:;.9(2020·四川泸县五中高二开学考试(理)如图,在四棱柱中,底面是正方形,平面平面,.过顶点,的平面与棱,分别交于,两点.()求证:;()求证:四边形是平行四边形;()若,试判断二面角的大小能否为?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)不能为.【解析】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形是平行四边形;(3)不能.如图,作交于点,延长交于点,连接,由,所以平面,则平面,又,根据三垂线定理,得到,所以是二面角的平面角,若,则是等腰直角三角形,又,所以中,由大角对大边知,所以,这与上面相矛盾,所以二面角的大小不能为.10(2021·济南市历城第二中学开学考试)在四棱锥中,侧面底面,底面为直角梯形,/,为的中点()求证:PA/平面BEF;()若PC与AB所成角为,求的长;()在()的条件下,求二面角F-BE-A的余弦值【答案】()见解析;()见解析;()二面角的余弦值为.【解析】()证明:连接AC交BE于O,并连接EC,FO,,为中点AE/BC,且AE=BC四边形ABCE为平行四边形O为AC中点又F为AD中点,/平面()由BCDE为正方形可得由ABCE为平行四边形可得/为即,侧面底面侧面底面平面,.()取中点,连,平面,的平面角,又,所以二面角的余弦值为练提升TIDHNEG1(2021·福建其他)九章算术中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,为中点,为内的动点(含边界),且.当在上时,_;点的轨迹的长度为_.【答案】2 【解析】 (1)当在上时,因为平面,故,又,故平面.故.又,为中点,故所以为中点.故.(2)取中点则由(1)有平面,故,又,设平面则有平面.故点的轨迹为.又此时,故.所以.故答案为:(1). 2 (2). 2(2020·福建省福州第一中学高三期末(理)分别为菱形的边的中点,将菱形沿对角线折起,使点不在平面内,则在翻折过程中,以下命题正确的是_.(写出所有正确命题的序号) 平面;异面直线与所成的角为定值;在二面角逐渐渐变小的过程中,三棱锥的外接球半径先变小后变大;若存在某个位程,使得直线与直线垂直,则的取值范围是.【答案】【解析】由分别为菱形的边的中点,故,平面ABD,故平面;取AC中点P,连接DP,BP,由于菱形ABCD,所以,可证得平面DPB,故,又,故,异面直线与所成的角为定值. 借助极限状态,当平面DCA与平面BCA重合时,三棱锥的外接球即为以三角形ABC的外接圆为圆心,半径为半径的球,当二面角变大时球心离开平面ABC,但球心在平面ABC的投影仍然为三角形ABC的外接圆的圆心,故二面角不为0时,外接球半径一定大于三角形ABC的外接圆半径,故三棱锥的外接球半径不可能先变小后变大. 过A在平面ABC中作交BC于H,若为锐角,H在线段BC上;若为直角,H与B点重合;为钝角,H在线段BC的延长线射线CB上.若存在某个位程,使得直线与直线垂直,由于,因此平面AHD,故.若为直角,H与B点重合,即,由于,不可能成立.若为钝角,则原平面图中,为锐角,由于立体图中,故立体图中一定比原图中更小,因此为锐角,故H在线段CB上,与H在线段BC的延长线射线CB上矛盾,因此的取值范围是.故答案为:3(2020·全国高三专题练习(文)现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织英国足球协会,并统一了足球规则人们称这一天是现代足球的诞生日如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为_个,该足球表面的棱为_条【答案】12 90 【解析】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x块正五边形,一共有5x条边,其中白皮三条边和黑皮相连,又足球表面中的正六边形的面为20个,根据题意可得方程:,解得,该足球表面中的正五边形的面为12个;因为任何相邻两个面的公共边叫做足球的棱,所以每条棱由两条边组成,该足球表面的棱为:条.故答案为:12;90.4(2021·江苏南京市第二十九中学高三月考)在正三棱柱中,点满足,其中,.(1)当时,三棱锥的体积为_.(2)当时,存在点,使得平面,则的取值集合为_.【答案】 【解析】(1)根据向量线性运算法则,时,在线段上,由可得体积(2)同理时,分别取中点为,在线段上,取中点,利用线面垂直的判定与性质证明,从而确定点与点重合,得结论【详解】(1)时,所以在线段上,如图1,三棱柱是正三棱柱,因此到平面的距离等于,所以;图1(2)分别取中点为,连接,如图2,由与(1)同理可得在线段上,平面,平面,则,取中点,连接,则,由平面平面,平面平面,得平面,又平面,所以,而,平面,所以平面,平面,所以,在正方形中,因为是中点,因此由,得与的交点是的中点,所以与重合,所以的取值集合为图25.(2021·进贤县第一中学高二月考(理)如图,在棱长为 1 的正方体中,点是的中点,动点在底面正方形内(不包括边界),若平面,则长度的取值范围是_. 【答案】【解析】建立空间直角坐标系,设点,求出平面的法向量,的方向向量,由题意可知,即,则,求解取值范围即可.【详解】以为原点,所在直线分别为,建立空间直角坐标系如图,则,.设,则的方向向量设平面的法向量,即,取,则若平面,则即,则.又即,即.故答案为:6(2021·贵州贵阳一中高三月考(文)如图甲为直角三角形ABC,B=,AB=4,BC=,且BD为斜边AC上的高,将三角形ABD沿BD折起,得到图乙的四面体A-BCD,E,F分别在DC与BC上,且满足,H,G分别为AB与AD的中点. (1)证明:直线EG与FH相交,且交点在直线AC上;(2)当四面体A-BCD的体积最大时,求四边形EFHG的面积.【答案】(1)证明见解析;(2).【解析】(1)利用得但不相等,即可证得直线相交,利用基本事实3即可证得交点在直线AC上;(2)先利用线面垂直的判定定理证得平面,即可证得,同理又,即可证得四边形为直角梯形,利用梯形面积公式求得其面积.【详解】(1)证明:由题意知,但,所以直线与FH相交,设交点为,因为平面,平面,同理平面,又因为平面平面,所以.(2)解:由题意知,所以平面,又平面,所以,同理又,所以四边形为直角梯形,因为,所以,则,所以7(2021·山东高三二模)如图所示,平面五边形ABCDE中,四边形ABCD为直角梯形,B=90°且ADBC,若AD=2BC=2,AB=,ADE是以AD为斜边的等腰直角三角形,现将ADE沿AD折起,连接EB,EC得如图的几何体图 图(1)若点M是ED的中点,求证:CM平面ABE;(2)若EC=2,在棱EB上是否存在点F,使得二面角E-AD-F的大小为60°?若存在,求出点F的位置;若不存在,请说明理由【答案】(1)证明见解析;(2)存在;点为的中点【解析】(1)作出辅助线,证得,结合线面平行的判定定理即可证出结论;(2)证出面,建立空间直角坐标系,假设存在点,然后利用空间向量的夹角公式建立方程,解方程即可判断.【详解】(1)证明:取的中点为,连接,是的中点,是的中位线,且,所以为平行四边形,因为面,面,所以平面(2)解:取的中点为,连接,其中,由可得,显然面,故以为坐标原点,分别以,所在的直线为轴,轴,轴;如图建立空间直角坐标系,则,设存在点,易知面的法向量可取,另外,设面的一个法向量为,则,可取一个法向量为,则,为的中点故存在点为的中点8(2021·福建其他)已知圆柱底面半径为1,高为,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.(1)求曲线的长度;(2)当时,求点到平面的距离.【答案】(1);(2)【解析】(1)曲线的长度为矩形的对角线长度.其中矩形的宽为圆柱的高,长为底面的半圆长,其中,底面的半圆长为的长为(2)当时,建立如图所示的空间直角坐标系:则有、,所以、.设平面的法向量为,则,代入可得,令,得,所以点到平面的距离为.9(2020·江西上高二中高二月考(理)如图,四棱锥中,(1)求证:平面平面;(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由【答案】(1)见证明;(2)见解析【解析】(1)证明:因为四边形为直角梯形,且, ,所以, 又因为根据余弦定理得 所以,故. 又因为, ,且,平面,所以平面, 又因为平面PBC,所以(2)由(1)得平面平面, 设为的中点,连结 ,因为,所以,又平面平面,平面平面,平面.如图,以为原点分别以,和垂直平面的方向为轴正方向,建立空间直角坐标系,则, 假设存在满足要求,设,即,所以,易得平面的一个法向量为. 设为平面的一个法向量, 由得,不妨取.因为平面与平面所成的锐二面角为,所以,解得,(不合题意舍去).故存在点满足条件,且.10(2021·天津市滨海新区塘沽第一中学高三月考)已知如图,四边形为矩形,为梯形,平面平面,(1)若为中点,求证:平面;(2)求直线与平面所成角的正弦值;(3)在线段上是否存在一点(除去端点),使得平面与平面所成锐二面角的大小为?若存在,请说明点的位置;若不存在,请说明理由【答案】(1)证明见解析;(2);(3)存在,.靠近C的三等分点【解析】(1)设与交于点,连接,则可得为的中点,而为的中点,由三角形中位线定理可得,然后由线面平行的判定定理可证得结论,(2)由已知可证得,两两垂直,所以分别以,为,轴建立空间直角坐标系,利用空间向量求解即可,(3)假设存在点,满足题意,且此时,然后利用空间向量求二面角【详解】(1)证明:如图,设与交于点,连接,四边形为矩形, 为的中点,又因为为的中点,而平面,平面,平面;(2)解:因为平面平面,平面平面,平面,所以平面,因为平面,所以,因为,所以,两两垂直,所以如图,分别以为坐标原点,以,为,轴建立空间直角坐标系,根据题意,则有,所以,假设平面的一个法向量为,则有,设直线与平面所成角的平面角为,则有(3)解:假设存在点,满足题意,且此时,即得,则有,假设平面的一个法向量为,则有,又因为平面的一个法向量为,根据题意,则有,解之可得,即得,即点为线段上靠近点的一个三等分点,坐标为练真题TIDHNEG1(2020·全国高考真题(理)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )ABCD【答案】C【解析】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C.2(2018·浙江高考真题)已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则( )ABCD【答案】D【解析】设为正方形的中心,为中点,过作的平行线,交于,过作垂直于,连接、,则垂直于底面,垂直于, 因此从而因为,所以即,选D.3(2019·全国高考真题(文)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有_个面,其棱长为_【答案】共26个面. 棱长为. 【解析】【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,即该半正多面体棱长为4(2018·天津高考真题(理)如图,且AD=2BC,,且EG=AD,且CD=2FG,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】()证明见解析;();().【解析】依题意,可以建立以D为原点,分别以,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,1),N(1,0,2)()依题意=(0,2,0),=(2,0,2)设n0=(x,y,z)为平面CDE的法向量,则 即 不妨令z=1,可得n0=(1,0,1)又=(1,1),可得,又因为直线MN平面CDE,所以MN平面CDE()依题意,可得=(1,0,0),=(0,1,2)设n=(x,y,z)为平面BCE的法向量,则 即 不妨令z=1,可得n=(0,1,1)设m=(x,y,z)为平面BCF的法向量,则 即 不妨令z=1,可得m=(0,2,1)因此有cos<m,n>=,于是sin<m,n>=所以,二面角EBCF的正弦值为()设线段DP的长为h(h0,2),则点P的坐标为(0,0,h),可得易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=0,2所以线段的长为.5.(2021·全国高考真题(理)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,D为棱上的点 (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?【答案】(1)见解析;(2)【解析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案【详解】因为三棱柱是直三棱柱,所以底面,所以因为,所以,又,所以平面所以两两垂直以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图所以,由题设()(1)因为,所以,所以(2)设平面的法向量为,因为,所以,即令,则因为平面的法向量为,设平面与平面的二面角的平面角为,则当时,取最小值为,此时取最大值为所以,此时6.(2021·全国高考真题(理)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,D为棱上的点 (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?【答案】(1)见解析;(2)【解析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案【详解】因为三棱柱是直三棱柱,所以底面,所以因为,所以,又,所以平面所以两两垂直以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图所以,由题设()(1)因为,所以,所以(2)设平面的法向量为,因为,所以,即令,则因为平面的法向量为,设平面与平面的二面角的平面角为,则当时,取最小值为,此时取最大值为所以,此时专题9.1 直线与直线方程练基础1.(福建高考真题(文)“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的( )A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件2(2020·肥东县综合高中月考(文)点在直线上,是坐标原点,则的最小值是( )ABCD3【多选题】(2021·全国高二课时练习)(多选)已知直线,则直线( )A过点B斜率为C倾斜角为60°D在轴上的截距为14【多选题】(2021·全国高二课时练习)(多选)已知直线,则下列说法正确的是( )A直线的斜率可以等于0B若直线与轴的夹角为30°,则或C直线恒过点D若直线在两坐标轴上的截距相等,则或5【多选题】(2021·全国高二课时练习)(多选)已知直线的方程为,则下列判断正确的是( )A若,则直线的斜率小于0B若,则直线的倾斜角为90°C直线可能经过坐标原点D若,则直线的倾斜角为0°6(2021·全国高二课时练习)直线的斜率为_,在轴上的截距为_.7(2021·全国)已知直线,将直线绕点按逆时针方向旋转后,所得直线的方程为_,将直线绕点按顺时针方向旋转45°后,所得直线的方程为_8(2021·浙江衢州·高二期末)已知直线:和:,且,则实数_,两直线与之间的距离为_9.(2020·浙江开学考试)已知直线的方程为,直线的方程为,则直线的斜率为_,直线与的距离为_.10(2021·抚松县第一中学高二月考)已知A(1,0),B(1,2),直线l:2xaya0上存在点P,满足|PA|+|PB|,则实数a的取值范围是 _练提升TIDHNEG1.(2021·绥德中学高一月考)已知,直线恒过点(,1),则的最小值为( )A8B9C16D182(2019·四川高考模拟(文)已知点在动直线上的投影为点,若点,那么的最小值为( )A2BC1D3(2019·湖南衡阳市八中高三月考(文)已知直线的倾斜角为且过点,其中,则直线的方程为( )A.B.C.D.4(四川高考真题(文)设,过定点的动直线和过定点的动直线交于点,则的取值范围是( )ABCD5.(2020·浙江)已知点,直线l过点M且与

    注意事项

    本文(2024届新高考数学一轮复习配套练习专题8.8 立体几何综合问题 (新教材新高考)(练)含答案.docx)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开