2021-2022学年河南省周口市某校部初三(下)5月模拟考试数学试卷与答案及解析.pdf
2022-2022学年河南省周口市某校部初三(下)5 月模拟考试数学试卷一、选择题I.实数-5 的绝对值是()1 1AT B.-C.-D.52.下列四个图形中,既是中心对称图形又是轴对称图形的是()3.20 22年河南春晚舞蹈节目 唐宫夜宴成功“出圈”,让传统文化活起来、让现代科技亮起来、让时代精神燃起来.受到全国网民的追捧.该节目视频在网络上的播放量突破5 0 0 0 万次,5 0 0 0 万用科学记数法表示为()A.5 x 1 03 B.0.5 x 1 04 C.5 x 1 07 D.5 0 x 1 034 .如图,直线a b,直角三角板4 B C 的直角顶点C 在直线b 上,若Z 1 =5 4。,则4 2的度 数 为()A.36 B.4 4 C.4 60 D.5 4 5 .小明在数学课上遇到下列四个算式,你认为运算正确的是()A.a6-r a3=a2 B.(a)2 a3=a5C.(a+b)2=a2+b2 D.a3+a3=2a66.若点4 0 1,-2),8(%2,3),(?(:3,4)在反比例函数丁=的 图 象 上,则与其2,%3的关系是()A.X-t 尤 2 尤 3 B.X2 尤 3 C.%1 尤 3%2 D.X3 尤 2 刀 17.如图,将 ABC沿BC方向平移得到 DEF,力BC与 DEF重叠部分(图中阴影部分)的面积是AABC面积的一半,已知BC=6,则EC的 长 为()A.3 B.3V2 C.3V3 D.48.小明看到关于四川大凉山留守儿童的相关报道后,想为这些孩子献一份爱心.六一儿童节当天他将三、四、五三个月挣得的800元零花钱成功捐出.已知三月份小明做家务挣得零花钱200元,设从三月份到五月份挣得零花钱的月平均增长率为X,则根据题意列出方程为()A.200(l+2%)=800B.200 x 2(1+x)=800C.200(l+x)2=800D.200+200(1+x)+200(1+x)2=8009.如 图,在边长为4的菱形ABC。中,ABC=60,点P为CD的中点,按以下步骤作图:以点P为圆心,P。长为半径作弧,交4。于点E;再分别以点。和点E为圆心,大 于 的 长 为 半 径 作 弧,两弧相交于点Q;作直线P Q,交AD于点Q,则线段OP的长为()10.如图,4BC中,CB=C4,1CB=90。,点。在边BC上(与B,C不重合),以AD为边在AD右侧作正方形A D E F,过点F作F N L C 4交CA的延长线于点N,连接FB,交OE于点P,给出以下结论:CN=FN+CD;乙40c=AABF;四边形CBFN试卷第2页,总26页二、填空题=F P-B C,其中正确结论的个数是()D.5请写出一个大于3且小于4的无理数:一元一次不等式组点t:的所有整数解的和为一,小明和小亮准备报名参加学校社团,每人需要在文学社、书画社、足球社、动漫社中选择一个,则他们刚好选择同一个社团的概率是_ _ _ _ _ _ _.如图,。中,若直径48=4,C,。为。上两点,且分别位于直径4B的两侧,C为弧4B的中点,BCD=1 5 ,则 图 中 阴 影 部 分 的 周 长 为.(结果保留根号或在矩形ABCD中,AB=2,AD=273,M,N 分别为AB,CD的中点,点P 为线段MN上一动点,以线段BP为边,在BP左侧作等边三角形B P Q,连接Q M,则QM的最小值为下面是小明同学进行分式化简的过程,请认真阅读并完成相应任务.%2-1 X 1%2 4-2%4-1 2%+2_ a+i)a-1)_ -1(x+1)2 2(x+l)第一步,x-1 X-1x+1 2(x+l)第二步,-2(x+l)2(x+l)第三步,2(p-(x T)2(x+l)第四步,2X-2-X-12(x+l)第五步,2X+2第六步(1)任务一:填 空:以上化简步骤中,第 步是进行分式的通分,通分的依据是第 步开始出现错误,这 一 步 错 误 的 原 因 是;(2)任务二:请写出该分式正确的化简过程.习近平总书记强调:“红色基因就是要传承.中华民族从站起来、富起来到强起来,经历了多少坎坷,创造了多少奇迹,要让后代牢记,我们要不忘初心,永远不可迷失了方向和道路为鼓励大家读好红色经典故事,某校开展了“传承红色基因,读好红色经典”活动.为了解七、八年级学生(七、八年级各有800名学生)的阅读效果,该校举行了红色经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七 年 级:79,85,73,80,75,76,87,70,75,94,75,78,81,71,75,80,86,59,83,77.八 年 级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:40%4950%5960%6970 x 7980%8990 x 100七年级010a71八年级1007102平均数众数中位数七年级7875b试卷第4页,总26页八年级78C80.5请回答下列问题:(1)在上面两个表格中:a=,b=,c=;(2)估计该校七、八年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对红色经典文化知识掌握的总体水平较好,并说明理由.某区域平面示意图如图所示,点。在河的右侧,人民路4B与桥BC垂 直.某校数学小组进行研学活动时,在。处测得点。位于西北方向,又在4处测得点。位于南偏东65。方向,另测得BC=628m,AB=4 0 0 m,求出点。到4B的距离(结果保留整数.参考数据sin65 x 0.91,cos65 0.42,tan65 2.14)为落实学生每天“阳光一小时”校园体育活动,郑州市某学校计划购买一批新的体育用品.经调查了解到甲、乙两个体育用品商店的优惠活动如下:甲商店:所有商品按标价8折出售;乙商店:一次购买商品总额不超过200元的按原价计费,超过200元的部分打6折.设需要购买体育用品的原价总额为x元,去甲商店购买应付y用元,去乙商店购买应付y乙元,其函数图象如图所示.(1)分别求y尹,y z 与 的关系式;(2)两图象交于点4,请求出4点坐标,并说明点4 的实际意义;(3)请根据函数图象,直接写出选择去哪个商店购买体育用品更合算.马老师带领同学们复习 圆的内容时,展示出如下内容:“如图,力BC内接于。0,直径AB的长为6,过点C的切线交AB的延长线于点。马老师要求同学们在此基础上添加一个条件编制一道题目,并解答问题.(1)若添加条件2。=30。“,则AD的长为;(2)小亮说:“我添加的条件是乙4=3 0 ,可以得到4C=CC.你认为小亮的说法是否正确?请说明理由.在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-l(a 0).(1)抛物线的对称轴为 抛物线与y轴 的 交 点 坐 标 为;(2)试说明直线y=x-2与抛物线y=ax2-2ax-l(a -1),(1)列 表:其中小=n=X-352-232-120221322工23ym45143232120_2132n试卷第6页,总26页(2)描 点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,已描出部分相应的点,如图所示,请画出函数的图象;(3)研究函数并回答下列问题:已知点4(一1 f 1)(一;疗2)(1,|),。0:2,6)在函数图象上,则为_ _ _ _ _ _ _ _ y2,X i 叼(填或“”)当函数值y =1.6时,求自变量X 的 值;若直线丫=x +b 与函数图象有且只有一个交点,请直接写出b 的取值范围.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到.小明在数学学习中遇到了这样一个问题:“如图1,RM4BC中,N 4 C B=9 0。,4 a4 B =a,点P在A B 边上,过点P 作PQ于点Q,将 A P Q 绕点4 逆时针方向旋转,如图2,连接CQ,。为B C 边的中点,连接P。并延长到点M,使O M =OP,连接C M .探究在?!2(?的旋转过程中,线段C M,C Q 之间的数量关系和位置关系小明计划采用从特殊到一般的方法探究这个问题.图 3图4(1)填 空:如图3,当a=30。时,第=直线C Q 与C M 所夹锐角的度数为;如图4,当a=4 5。时,%=,直线C Q 与C M 所夹锐角的度数为一般结论:(2)将A4PQ绕点4 逆时针方向旋转的过程中,线段CQ,CM之间的数量关系如何(用含a 的式子表示)?直线CQ与CM所夹锐角的度数是多少?请仅就图2所示情况说明理由;问题解决:(3)如图4,在RtAABC中,若4B=4,a=45。,AP=3,将 APQ由初始位置绕点4逆时针方向旋转S 角(0 S 1 8 0)当点Q到直线AC的距离为2时,请直接写出线段CM的值.试卷第8页,总26页参考答案与试题解析2022-2022学年河南省周口市某校部初三(下)5月模拟考试数学试卷一、选择题1.【答案】D【考点】绝对值【解析】利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|-5|=5.故选D.2.【答案】A【考点】轴对称与中心对称图形的识别【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:力.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.不是轴对称图形,不是中心对称图形,故此选项不合题意.C.是轴对称图形,不是中心对称图形,故此选项不合题意.D.是中心对称图形,不是轴对称图形,故此选项不合题意.故选4.3.【答案】C【考点】科学记数法-表示较大的数【解析】此题暂无解析【解答】解:科学记数法的表示形式为a x IO 的形式,其中lW|a|3,4)在反比例函数y =-:的图象上,4代 入 得 丁 3,p i =2,解得|工2=一入Q =T,4v 2 1 ,3:X1 X3%2-故选c.7.【答案】B【考点】相似三角形的性质与判定平移的性质【解析】此题暂无解析【解答】解:;A B C 沿B C 边平移到A D E 尸的位置,AB/EG,GEC ABC,SGEC _()2 _ 1一 SABC_ 氤,_ 21 竺 _ H,而=方,BC=6,EC=3V 2.故选8.8.【答案】D【考点】一元二次方程的应用一一增长率问题由实际问题抽象出一元二次方程【解析】按照题意即可列式.【解答】解:已知三月份挣零花钱200元,月平均增长率为,.四月份将零花钱为200(1+x),五月份挣零花钱为200(1+%)(1+久)=200(1+%)2.三个月之和为 200+200(1+x)+200(1+x)2=800.故选D.9.【答案】A【考点】菱形的性质全等三角形的性质与判定作图一基本作图【解析】本题根据菱形的性质和作图得到的条件,结合全等三角形的判定得出 EPQ=DPQ,再根据全等三角形的性质,得到直角三角形,再利用特殊角30。,求它所对边的边长,再利用勾股定理,求出线段。P 的长。【解答】解:连接PE,EQ,QD,四边形ABC。是菱形,边长为4,AABC=AADC,DC=AD=4,/.ABC=60,乙 ADC=60.以点P为圆心,PO长为半径作弧,交4。于点E,PD=PE,AOPE为等边三角形,乙 EPD=60,分别以点。和点E为圆心,大 于 的 的 长 为 半 径 作 弧,两弧相交于点Q,EQ=DQ,PQ=PQ,EPQ=DPQ,乙 EPQ=Z.DPQ,乙EPQ+乙DPQ=乙EPD,2 乙 DPQ=EPQ=6U,乙 DPQ=30,乙 DPQ+ADC=30+60=90,OOP为直角三角形,试卷第12页,总26页OD=-P D,OP2+OD2=PD2,2 点P为CD的中点,PD=-D C =2,2 OD=1,OP2+l2=22,OP=V3.故选410.【答案】c【考点】全等三角形的性质与判定正方形的性质相似三角形的性质与判定【解析】证明 NFA=C A D,推出CD=AN,AC=FN,即可得到CN=AC+AN=FN+CD,从而对做出判断;证明四边形BCNF是矩形,得到乙4BF=乙CBF-AABC=45。,根据/.ADC A B C,可得从而对,做出判断;根据=45。,可得4AFB+4FAB=180-ABF=1 3 5,从而对做出判断;证明 ACD FEP,从而得到令=告根据BC=ACAD=E F,可得EF FPEF2=FP B C,从而对做出判断,综上即可得到答案.【解答】解:FN 1 CA,:.Z-FNA=90,4NE4+4NAF=90,44cB=90,乙FNA=LACB.四边形4DEF是正方形,LFAD=90,FA=AD,:.NAF+CAD=90,乙 NFA=Z-CAD.在可凡4和C4D中,Z.FNA=乙 ACD,乙NF A=I D,FA=ADf:.NFA 会CADQUS),CD=AN,AC=FN,:.CN=AC+AN=FN+CD,故正确;AC=BC,Z,ACB=90,J 乙4BC=45。,AC=FN,:.BC=FN,乙ACB=90,Z.FNC=90.ACB+FNC=180,BC/FN,四边形8CNF是平行四边形,Z-ACB=90,四边形8CN/是矩形,ZCBF=90,,乙 ABF=LCBF 乙 ABC=45,:.AADC Z.ABC,A D O A B F,故错误,正确;乙4BF=45。,Z,AFB+(FAB=180-4ABF=135,故正 确;四边形ADEF是正方形,AD=EF,Z.ADE=Z.E=90,Z-ADC+乙 PDB=乙 PDB+乙 DPB=90,Z.ADC=Z.DPB,乙DPB=乙FPE,:./.ADC=4FPE,ZC=Z,=9O,/.LACD FEP,.,.一AC=一AD.EF FP:BC=AC,AD=EF,:.EF2=F P-B C,故正确.综上所述,正确.故选C.二、填空题【答案】兀(答案不唯一)【考点】无理数的判定【解析】根据无理数是无限不循环小数进行解答,由于兀*3.14,故7 T 符合题意.【解答】解:n 3.14-,3 7 T 2(J),解:2 T,1 2%3,解得1 x 2-3,x 2.解得 2 x2 3-1,x 2,一元一次不等式组的解为一2 x W 2,其整数解为一 1,0,1,2,故其和为(1)+0 +1 +2=2.故答案为:2.【答案】14【考点】列表法与树状图法概率公式【解析】利用列表法求解.【解答】解:列表可得所有情况如下:文学社书画社足球社动漫社文学社文学文学文学书画文学足球文学动漫书画社书画文学书画书画书画足球书画动漫足球社足球文学足球书画足球足球足球动漫动漫社动漫文学动漫书画动漫足球动漫动漫则他们刚好选择同一个社团的概率P =白=今l o 4故答案为:【答案】+2V 2+2 3【考点】圆周角定理弧长的计算圆的综合题垂径定理【解析】利用圆的相关知识求解即可.【解答】解:作OE L C D,垂足为点E,连接。D,0 C,如图,*/AB=4,OB=OC=OA=2.。为AB的中点,BC=Ac,/LBOC=90,BOC是等腰直角三角形,乙。BC=NOCB=45,BC=y/OB2+OC2=2V2.(BCD=15,J Z.OCD=(OCB-乙BCD=30.OE=I OC=1,CE=y/3OE=V3,/.CD=2CE=2V3./OD=OC,:.OCD=ODC=30 t:.乙DOC=180-30-30=120.又乙BOC=90,乙DOB=30.:C圆=,rTr 30.n BD=x 4T T=-,360 3 阴影部分周长为BD+BC+CD=+2V2+2V3.故答案为:+2V2+2V3.【答案】12【考点】矩形的性质动点问题【解析】根据垂直平分线的性质确定三角形BPQ的位置,再根据等腰三角形,矩形的性质进行求解.【解答】解:根据题意,BQ=B P,且通过运算可知,当P点位于P位置,即MN中点时,Q点经过4 点,且当M,P重合时,Q点位于如图所示位置,根据点P为线段MN上一动点,试卷第16页,总26页可知Q点始终位于如图直线4Q上.作ME垂直于4Q交力Q于点E,此时QM取到最小值EM,根据器=:=cos乙4BQ可知,AD ZBQ 14Q,EM/BQ,由题得M为AB中点且BQ=1,EM=-B Q =-.2“2故答案为:i三、解答题【答案】三,分式的基本性质(或填为:分式的分子分母都乘(或除以)同一个不为。的整式,分式的值不变),五,括号前面是“一,去掉括号后,括号里面的第二项没有变号(或填为:去括号时出错)X2 1 X 1(2)x2+2x+l 2尤 +2(X+1)(%1)X 1(%+I)2 2(%+1)x-1%1x+1 2(%+1)2(x 1)x 12(%+1)2(%+1)2(%1)(%1)2(%+1)2x 2-x 1=-2(%+1)-_ X-1-2X+2【考点】分式的加减运算【解析】解:第三步,分式的基本性质(或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变)解:第五步,括 号 前 面 是 去 掉 括 号 后,括号里面的第二项没有变号,(或填为:去括号时出错)【解答】解:(1)以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或填为:分式的分子分母都乘(或除以)同一个不为0 的整式,分式的值不 变);第五步开始出现错误,这一步错误的原因是括号前面是“一,去掉括号后,括号里面的第二项没有变号(或填为:去括号时出错).故答案为:三;分式的基本性质(或填为:分式的分子分母都乘(或除以)同一个不为0 的整式,分式的值不 变);五;括号前面是“-,去掉括号后,括号里面的第二项没 有 变 号(或填 为:去括号时出错).%2 1 X 17%2+2%+1 2%4-2(%+1)(%1)x 1(%4-I)2 2(%+1)x 1 x 1%+1 2(%+1)2(%1)x 12(x +1)2(%+1)_ 2(%-1)-(x -1)=2(%4-1)2%2-x 1=-2(%+1)-X-12X+2*【答案】1 1,77.5,81(2)(80 0 +80 0)x=1 20 (人).答:该校七、八年级学生在本次竞赛中成绩在90 分以上共有1 20 人.(3)八年级学生的总体水平较好.因为七、八年级的平均数相等,而八年级的众数和中位数均高于七年级,所以八年级学生的总体水平较好.【考点】中位数众数算术平均数计算器-平均数用样本估计总体【解析】(2)求出90 分以上的所占得百分比即可;(3)根据中位数、众数的比较得出结论.【解答】解:(1%=2 0-1-7-1=1 1 ;将七年级学生成绩从小到大排列处在中间位置的两个数的平均数为北罗=77.5 ,因此中位数是77.5,即b =77.5 ;试卷第18页,总 26页八年级学生成绩出现次数最多的是81 分,共出现3次,因此众数是8 1,即c=8.故答案为:1 1 ;77.5 ;81.(2)(80 0 +80 0)X 9=1 20 (人).答:该校七、八年级学生在本次竞赛中成绩在90 分以上共有1 20 人.(3)八年级学生的总体水平较好.因为七、八年级的平均数相等,而八年级的众数和中位数均高于七年级,所以八年级学生的总体水平较好.【答案】解:如图,过点D 作D E 1 A B 于点E,过D 作D F 1 BC于点F,则四边形E B F D 是矩形.设 DE=xm,在 RtUDE 中,Z.AED=90 ,DPV D A E=-:,AEDE-tanDAE-2.141X.郎=4 0。-击又BF=DE=xm,CF=(628 x)m,在中,Z D F C =90,4DCF=45,:.DF=CF=(628-x)m.又 BE=D F,即 400-=628-x,解得x =4 28,故点。到A B 的距离约是4 28m .【考点】解直角三角形的应用-方向角问题【解析】此题暂无解析【解答】解:如图,过点。作O E 1 4 B 于点E,过。作于点尸,则四边形E B F D 是矩形.设 DE xm,在 R t z M D E 中,Z.AED=90 ,DR D A E=-:,AE=DEtanz.DAE 2.14x2=4 0。-泰又 8F=DE=xm,CF=(628 x)m,在Rt(?)/;中,Z.DFC=90,/.DCF=45,DF=CF=(628-x)m.又BE=D F,即4 0 0-=628-x,解得尤=428,故点D到4B的距离约是4287n.【答案】解:(1)由题意可得,y甲=o.8x乙商店:当0%200时,yz=200+(%-200)x 0.6=0.6x+80,由上可得,汇 与,的函数关系式为见=o,tt(x 2 O O).(2求度修+8 0 解 得 忆4黑)y u.ox-r oil.yz ozu.4(400,320),点4 的实际意义是当买的体育商品标价为400元时,甲、乙商店优惠后所需费用相同,都是320元.(3)由点力的意义,结合图象可知,当x 4 0 0,选择乙商店更省钱.【考点】一次函数的应用【解析】此题暂无解析【解答】解:(1)由题意可得,乙商店:当0 4 x 4 200时,y z 与X的函数关系式为yz=X,当x 200时,yz=200+(x-200)x 0.6=0.6%+80,由上可得,汇 与 通 函 数 关 系 式 为 见=黑;薪;*o o),尹=08%0 =400,1 J lyz=0,6x+80.畔何(yz=320.4(400,320),点4 的实际意义是当买的体育商品标价为400元时,甲、乙商店优惠后所需费用相同,都是320元.(3)由点A的意义,结合图象可知,当x 4 0 0,选择乙商店更省钱.【答案】9(2)小亮的说法正确,连接。C,如图,*/OC是。的切线,乙 DCO=90。.48是。的直径,乙4cB=90,1.ACB-Z.DCO.试卷第2 0页,总26页乙4=30,J Z.ABC=60.又OB=OC,AOBC为等边三角形,J CO=CB.Z-ABC=zDOC=60.在 48。和4 OOC中,/.ABC=/.DOC,CB=CO,./.ACB=Z.DCO=90,LABC=DOC(ASA),:.AC=DC.【考点】切线的性质含30度角的直角三角形等边三角形的性质与判定全等三角形的性质与判定圆的综合题【解析】(1)连接。C根据切线的性质得到NOC。=90。,根据含30。的直角三角形的性质计算;(2)得出ACB=NDCO,判定 OBC为等边三角形,得出CO=CB,AABC=Z.DOC=6 0 ,根据4SA判定力BC三D O C,便可得出结果.【解答】解:(1)连接。C,如图,DC是。的切线,.NOCO=90。,又NO=30,OD=2OC=6,AD=OA+OD=3+6=9.故答案为:9.(2)小亮的说法正确,连接。C,如图,是。的切线,Z.DCO=90.AB是。的直径,AACB=90,ACB=Z.DCO.:乙 A=30,ABC=60.又OB=OC,AOBC为等边三角形,CO=C B,乙ABC=4DOC=60.在28。和4 DOC中,/.ABC=乙 DOC,CB=CO,Z.ACB=乙 DCO=90,ABC=DOC(ASA),:.AC=DC.【答案】直线 x=1,(0,1)(2)令 x 2=ax2 2 ax 1,则原方程可化为a/-(2a+l)x+1=0,由根的判别式可得炉 4ac=(2a+I)2 4a=4a2+1 0,直线y=x-2与抛物线y=ax2-2ax-l(a 0)一定存在两个交点.(3)抛物线的对称轴直线为x=1,;顶点在一 2 Wx W 2范围内的最大值是1,顶点坐标为(L1),a 0,抛物线的开口向下,当 l 时,y随x的增大而减小,;-2 离对称轴更远一些,即尤=-2 时,有最小值,把顶点(1,1)代入y=ax?-2ax-1,a-2a-1=1 解得a=-2,y 2x2+4x 1,当 =-2 时,y=-1 7,即y 的最小值是一 17.【考点】二次函数综合题抛物线与x 轴的交点二次函数的最值【解析】根据二次函数的顶点式即可求出其对称轴,根据x=0,即可求出与y轴的交点坐标.根据题意得出关于x的一元二次方程,然后根据判别式来解答即可.根据二次函数的性质来解答即可.【解答】解:(1)抛物线为y=ax2-2 a x-l(a 0,直线y=x-2与抛物线y=ax2-2ax-l(a 0)一定存在两个交点.(3)抛物线的对称轴直线为x=1,,顶点在一 2 x 2范围内的最大值是1,顶点坐标为(1,1),试卷第22页,总26页v a 0,抛物线的开口向下,当“1时,y 随无的增大而减小,V-2 离对称轴更远一些,即x=2时,有最小值,把顶点(1,1)代入y=ax2-2ax-1,a 2a 1=1 解得a=-2,y=2x2+4x 1,.当x=-2 时,y=-1 7,即y 的最小值是-17.【答案】t-2(3)把做一 1,%)代入y=一:,得 当=2,把8(一 打 2)代入y=-:,得 刈=J yi y2;当X i W-l,亚 三-1时,把c(X,|)代入y=得xi=-g,把。(乂 2,6)代入y=-|,得%2=(舍去),不存在;当 2 1 时,把c(%i,|)代入y=|x-1|,得与=|或与=一 点把。(%6)代入y=|x-l|,得*2=7或一5(舍去),xr 一 1 时,把C(xi,|)代入y=得与=-g,把D(%2,6)代入y=x-1|,得%2=7或-5(舍去),V%2;当右三一1时,把C(X1,|)代入y=X-1|,得Xi=|或Xi=-*把。(乂 2,6)代入y=-|,得%2=(舍去),不存在.综上,Xi x2.故答案为:;l,y =6时,则 =x=2.6 或 =0.6,综上,当y =1.6时,自变量x 的值为一:或2.6或-0.6.由图象可知:-1 b 3.【考点】函数值定义新符号函数的图象【解析】把x 的值分别代入x 取值范围对应在的函数解析式,求解即可.用平滑曲线将各点顺次连接起来即可.(3)把做一l,y/B(一(,及)分别代入 =一:,计算出y i,及并比较即 可;当X i W-1,X2 一 I 时,当/1;当 X W-l,y=1.6 时,当X -1,y =1.6时,分别求解即可;利用图象法求解即可.【解答】解:(1)把X =-3 代入y =一|,得2 2m =-=一,-3 3把x =3 代入y =|x -1 ,得n =|3-1|=2.故答案为:|;2.(3)把力(一1,%)代入y =-:,得y 1 =2,把8(一:必)代入V =得丫2=7,1 y i 72;当与w-i,孙 w-i时,把C(x i,|)代入y =得x i =_ g,试卷第24页,总26页把。(尤2,6)代入y =得%2=(舍去),不 存 在;当X 1 -1,x2 一1 时,把|)代入y =-1 1,得X 1 =T或X 1=一也把。(工2,6)代入y =|x -1|,得久2=7或-5(舍去),X1 一1 时,把C(x i,|)代入y =得x i =_:把。2,6)代入y =x-1|,得=7或-5(舍去),久1 V%2;当1 1,x2 -l B t,把代入y =一“,得/=|或%=-也把。(尤2,6)代入y =得%2=(舍去),不存在.综 上,/x2.故 答 案 为:;-l,y =1.6时,贝(1.6=比一1|,:.x=2.6或 =0.6,综 上,当y =1.6时,自变量x的值为一:或2.6或一0 6 由 图 象 可 知:-1 b 3.【答 案】,30 ,4 5 2 2(2)由 同 理 可 得,4 A Q C F A P B,=co s a.Z.QCM=Z.ACQ+Z.ACB+4 M C B=Z.ABC 4-Z.ACB=90 -a+90 =1 80 -a.直线C Q与C M所夹锐角的度数是1 80。一(1 80。-a)=a.综 上:岩=co s a;直线C Q与C M所夹锐角的度数是a.(3)g或 后.【考 点】相似三角形的性质与判定旋转的性质【解 析】当a=30。时,先判定 QAC P 4 B,根据三角形相似的性质寻找边和角的关系,从而得到所求=45。,同理,通过相似确定所求.根 据(1)(2)问得出边之间的关系,进行求解.【解答】解AACB=.AQP=90,Z-a=30,丝 _ 竺 _ 立*AP AB 2 丁 Z.QAP=Z.CAB=30,/LQAP-/-CAP=Z.CAB-/-CAP,即4 Q4C=PAB,/.QAC PAB.OC=OB,OP=OM,四边形CPBM为平行四边形,乙MCB=乙CBP,CQ _CQ _AQ _V 3诙=丽=而 二 子 C M =LQCA+Z.ACB+乙 BCM=Z.ABP+乙 CBP+乙A CB=150.直线CQ与CM所夹锐角的度数为30。.当a=45。,同理,ZiQaC PAB,CQ _CQ _AQ _ V2CM =BP=A P=T,乙 QCM=Z.ACQ+乙 ACB+乙 MCB=Z.ABC 4-/.ACB=135./.直线CQ与CM所夹锐角的度数为45。.故答案为:Y;30。;当;45。.(2)由同理可得,4AQC sR A P B、=cosa.(QCM=乙 ACQ+乙 ACB+乙 MCB=Z.ABC+Z.ACB=90-a+90=180-a.直线CQ与CM所夹锐角的度数是180。一(180。-a)=a.综 上:器=cosa;直线CQ与CM所夹锐角的度数是a.旧 或 局.试卷第26页,总26页