高中数学新高考复习-专题10空间向量与立体几何【多选题】.docx
-
资源ID:96408402
资源大小:735.80KB
全文页数:9页
- 资源格式: DOCX
下载积分:5.5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学新高考复习-专题10空间向量与立体几何【多选题】.docx
专题10 空间向量与立体几何1已知向量, 下列等式中正确的是( )ABCD【答案】BCD【解析】根据坐标求出,根据向量的运算法则即可判定.由题,所以不相等,所以A选项错误;,所以,所以B选项正确;,所以C选项正确;,即,所以D选项正确.故选:BCD2已知A,B,C三点不共线,O为平面ABC外的任一点,则“点M与点A,B,C共面”的充分条件的是( )ABCD【答案】BD【解析】根据“时,若则点与点共面”,分别判断各选项是否为充分条件.当时,可知点与点共面,所以,所以,所以,不妨令,且此时,因为,由上可知:BD满足要求. 故选:BD.3如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )ABC向量与的夹角是60°D与AC所成角的余弦值为【答案】AB【解析】直接用空间向量的基本定理,向量的运算对每一个选项进行逐一判断.以顶点A为端点的三条棱长都相等, 它们彼此的夹角都是60°,可设棱长为1,则 而, 所以A正确. =0,所以B正确.向量,显然 为等边三角形,则.所以向量与的夹角是 ,向量与的夹角是,则C不正确又, 则, 所以,所以D不正确.故选:AB4给出下列命题,其中正确命题有( )A空间任意三个不共面的向量都可以作为一个基底B已知向量,则与任何向量都不能构成空间的一个基底C是空间四点,若不能构成空间的一个基底,那么共面D已知向量组是空间的一个基底,若,则也是空间的一个基底【答案】ABCD5下列命题中正确的是( )A是空间中的四点,若不能构成空间基底,则共面B已知为空间的一个基底,若,则也是空间的基底C若直线的方向向量为,平面的法向量为,则直线D若直线的方向向量为,平面的法向量为,则直线与平面所成角的正弦值为【答案】ABD【解析】不共面的三个非零向量可以构成空间向量的一个基底,由此可判断A,B,若直线的方向向量与平面的法向量垂直,则线面平行,可判断C,直线的方向向量与平面的法向量夹角的余弦值的绝对值与该直线与此平面所成角的正弦值相等,由此可判断D对于A,是空间中的四点,若不能构成空间基底,则共面,则共面,故A对;对于B,已知为空间的一个基底,则不共面,若,则也不共面,则也是空间的基底,故B对;对于C,因为,则,若,则,但选项中没有条件,有可能会出现,故C错;对于D,则则直线与平面所成角的正弦值为,故D对;故选:ABD6在四面体中,以上说法正确的有( )A若,则可知B若Q为的重心,则C若,则D若四面体各棱长都为2,M,N分别为,的中点,则【答案】ABC【解析】根据向量的线性运算与数量积一一判断即可.解:对于A, ,即,故A正确;对于B,若Q为的重心,则,即,故B正确;对于C,若,则故C正确; 对于D,故D错误.故选:ABC7给出下列命题,其中不正确的命题为( )A若,则必有A与C重合,B与D重合,AB与CD为同一线段;B若,则是钝角;C若为直线l的方向向量,则 (R)也是l的方向向量;D非零向量满足与,与,与都是共面向量,则必共面【答案】ABCD【解析】结合向量相关知识,对每个选项依次检验,证明其成立或举出反例判定该选项错误.考虑平行四边形中,满足,不满足A与C重合,B与D重合,AB与CD为同一线段;所以A选项不正确;当非零向量夹角为时,满足,但它们夹角不为钝角,所以B选项不正确;若为直线l的方向向量,当不能说是l的方向向量,所以C选项不正确;考虑三棱柱,满足与,与,与都是共面向量,但不共面,所以D选项不正确.故选:ABCD8正方体的棱长为1,分别为的中点则( )A直线与直线垂直B直线与平面平行C平面截正方体所得的截面面积为D点和点到平面的距离相等【答案】BC【解析】利用向量法判断异面直线所成角;利用面面平行证明线面平行;作出正方体的截面为等腰梯形,求其面积即可;利用等体积法处理点到平面的距离.对选项A:(方法一)以点为坐标原点,所在的直线分别为,轴,建立空间直角坐标系,则,.从而,从而,所以与直线不垂直,选项A错误;(方法二)取的中点,连接,则为直线在平面内的射影,与不垂直,从而与也不垂直,选项A错误;取的中点为,连接,则,易证,从而,选项B正确;对于选项C,连接,易知四边形为平面截正方体所得的截面四边形(如图所示),且,所以,而,从而选项C正确;对于选项D:(方法一)由于,而,而,所以,即,点到平面的距离为点到平面的距离的二倍.从而D错误.(方法二)假设点与点到平面的距离相等,即平面将平分,则平面必过的中点,连接交于点,易知不是的中点,故假设不成立,从而选项D错误.