欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2024年新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形.docx

    • 资源ID:96409422       资源大小:47.87KB        全文页数:15页
    • 资源格式: DOCX        下载积分:5.5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5.5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2024年新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形.docx

    第7讲三角恒等变换与解三角形考情分析1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值、范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度考点一三角恒等变换核心提炼1三角求值“三大类型”“给角求值”“给值求值”“给值求角”2三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1sin2cos2tan45°等(2)项的拆分与角的配凑:如sin22cos2(sin2cos2)cos2,()等(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次(4)弦、切互化例1(1)(2020·全国)已知(0,),且3cos28cos5,则sin等于()A.B.C.D.答案A解析由3cos28cos5,得3(2cos21)8cos5,即3cos24cos40,解得cos或cos2(舍去)又因为(0,),所以sin>0,所以sin.(2)已知sin,sin(),均为锐角,则等于()A.B.C.D.答案C解析因为,均为锐角,所以<<.又sin(),所以cos().又sin,所以cos,所以sinsin()sincos()cossin()××.所以.易错提醒(1)公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解跟踪演练1(1)已知,tan,则()ABCD2答案B解析tantan,因为,所以,即.(2)(tan10°)·_.答案2解析(tan10°)·(tan10°tan60°)···2.考点二正弦定理、余弦定理核心提炼1正弦定理:在ABC中,2R(R为ABC的外接圆半径)变形:a2Rsin A,b2Rsin B,c2Rsin C,sin A,sin B,sin C,abcsin AsinBsinC等2余弦定理:在ABC中,a2b2c22bccosA.变形:b2c2a22bccosA,cosA.3三角形的面积公式:SabsinCacsinBbcsinA.考向1求解三角形中的角、边例2在ABC中,角A,B,C的对边分别为a,b,c,且c.(1)求角A的大小;(2)若bc10,ABC的面积SABC4,求a的值解(1)由正弦定理及c,得sinC,sinC0,sinA(1cosA),sinAcosA2sin,sin,又0<A<,<A<,A,A.(2)SABCbcsinAbc4,bc16.由余弦定理,得a2b2c22bccos(bc)22bcbc(bc)23bc,又bc10,a21023×1652,a2.考向2求解三角形中的最值与范围问题例3(2020·新高考测评联盟联考)在:acsinAacosC,(2ab)sinA(2ba)sinB2csinC这两个条件中任选一个,补充在下列问题中,并解答已知ABC的角A,B,C的对边分别为a,b,c,c,而且_(1)求角C;(2)求ABC周长的最大值解(1)选:因为acsinAacosC,所以sinAsinCsinAsinAcosC,因为sinA0,所以sinCcosC1,即sin,因为0<C<,所以<C<,所以C,即C.选:因为(2ab)sinA(2ba)sinB2csinC,所以(2ab)a(2ba)b2c2,即a2b2c2ab,所以cosC,因为0<C<,所以C.(2)由(1)可知,C,在ABC中,由余弦定理得a2b22abcosC3,即a2b2ab3,所以(ab)233ab,所以ab2,当且仅当ab时等号成立,所以abc3,即ABC周长的最大值为3.规律方法(1)利用余弦定理求边,一般是已知三角形的两边及其夹角利用正弦定理求边,必须知道两角及其中一边,且该边为其中一角的对边,要注意解的多样性与合理性(2)三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围跟踪演练2(1)在ABC中,内角A,B,C的对边分别为a,b,c.若ABC的面积为S,且a1,4Sb2c21,则ABC外接圆的面积为()A4B2CD.答案D解析由余弦定理得,b2c2a22bccosA,a1,所以b2c212bccosA,又SbcsinA,4Sb2c21,所以4×bcsinA2bccosA,即sinAcosA,所以A,由正弦定理得,2R,得R,所以ABC外接圆的面积为.(2)在ABC中,角A,B,C所对的边分别为a,b,c,若A3B,则的取值范围是()A(0,3) B(1,3) C(0,1 D(1,2答案B解析A3B2cos2Bcos2B2cos2B1,即2cos2B1,又AB(0,),即4B(0,)2Bcos2B(0,1),(1,3)(3)在ABC中,内角A,B,C所对的边分别为a,b,c,若tanC,ab,BC边上的中点为D,则sinBAC_,AD_.答案解析因为tanC,所以sinC,cosC,又ab,所以c2a2b22abcosC13132×××16,所以c4.由,得,解得sinBAC.因为BC边上的中点为D,所以CD,所以在ACD中,AD2b222×b××cos C,所以AD.专题强化练一、单项选择题1(2020·全国)在ABC中,cosC,AC4,BC3,则cosB等于()A.B.C.D.答案A解析由余弦定理得AB2AC2BC22AC·BCcosC42322×4×3×9,所以AB3,所以cosB.2(2020·全国)已知sinsin1,则sin等于()A.B.C.D.答案B解析因为sinsinsinsinsincos cossin sincos cossin 2sincos sin1.所以sin.3在ABC中,内角A,B,C的对边分别为a,b,c,且b2,1,B,则a的值为()A.1B22C22D.答案D解析在ABC中,内角A,B,C的对边分别为a,b,c,且b2,1,所以1,所以tanC1,C.因为B,所以ABC,所以sinAsinsincoscossin.由正弦定理可得,则a.4在ABC中,角A,B,C的对边分别为a,b,c,acosBbcosA2ccosC,c,且ABC的面积为,则ABC的周长为()A1B2C4D5答案D解析在ABC中,acosBbcosA2ccosC,则sinAcosBsinBcosA2sinCcosC,即sin(AB)2sinCcosC,sin(AB)sinC0,cosC,C,由余弦定理可得,a2b2c2ab,即(ab)23abc27,又SabsinCab,ab6,(ab)273ab25,即ab5,ABC的周长为abc5.5若,都是锐角,且cos,sin(),则cos等于()A.B.C.或D.或答案A解析因为,都是锐角,且cos<,所以<<,又sin(),而<<,所以<<,所以cos(),又sin,所以coscos()cos()cossin()·sin.6在ABC中,A,B,C的对边分别是a,b,c.若A120°,a1,则2b3c的最大值为()A3B.C3D.答案B解析因为A120°,a1,所以由正弦定理可得,所以bsinB,csinC,故2b3csinB2sinCsin2sinCsinC2cosCsin(C)其中sin,cos,所以2b3c的最大值为.二、多项选择题7(2020·临沂模拟)在ABC中,角A,B,C的对边分别为a,b,c,若b2,c3,A3C,则下列结论正确的是()AcosCBsinBCa3DSABC答案AD解析因为A3C,ABC,所以B2C.由正弦定理,得,即,所以cosC,故A正确;因为cosC,所以sinC,所以sinBsin2C2sinCcosC2××,故B错误;因为cosBcos2C2cos2C1,所以sinAsin(BC)sinBcosCcosBsinC××,则cosA,所以a2b2c22bccosA(2)2322×2×3×1,所以a1,故C错误;SABCbcsinA×2×3×,故D正确8已知0<<,若sin2m,cos2n且mn,则下列选项中与tan恒相等的有()A.B.C.D.答案AD解析sin2m,cos2n,m2n21,tan.三、填空题9(2020·保定模拟)已知tan,则_.答案解析因为tan,所以,即,解得tan,所以tan.10在ABC中,a,b,c分别是内角A,B,C的对边,且,则A_.答案解析由正弦定理,得,整理得b2a22acsinBc2,即b2c2a22acsinB2bcsinA,由余弦定理得,b2c2a22bccosA,2bccosA2bcsinA,即cosAsinA,tanA1,A.11(2020·全国)如图,在三棱锥PABC的平面展开图中,AC1,ABAD,ABAC,ABAD,CAE30°,则cosFCB_.答案解析在ABD中,ABAD,ABAD,BD,FBBD.在ACE中,AEAD,AC1,CAE30°,EC1,CFCE1.又BC2,在FCB中,由余弦定理得cosFCB.12(2020·山东省师范大学附中月考)在ABC中,设角A,B,C对应的边分别为a,b,c,记ABC的面积为S,且4a2b22c2,则的最大值为_答案解析由题意知,4a2b22c2b24a22c2a2c22accosB,整理,得2accosB3a23c2cosB,因为222,代入cosB,整理得2,令t,则2(9t222t9)2,所以2,所以,故的最大值为.四、解答题13(2020·全国)ABC中,sin2Asin2Bsin2CsinBsinC.(1)求A;(2)若BC3,求ABC周长的最大值解(1)由正弦定理和已知条件得BC2AC2AB2AC·AB.由余弦定理得BC2AC2AB22AC·ABcosA由得cosA.因为0<A<,所以A.(2)由正弦定理及(1)得2,从而AC2sinB,AB2sin(AB)3cosBsinB.故BCACAB3sinB3cosB32sin.又0<B<,所以当B时,ABC周长取得最大值32.14(2020·重庆模拟)在ABC中,a,b,c分别为内角A,B,C的对边,2b2(b2c2a2)(1tanA)(1)求角C;(2)若c2,D为BC的中点,在下列两个条件中任选一个,求AD的长度条件:ABC的面积S4且B>A;条件:cosB.解(1)在ABC中,由余弦定理知,b2c2a22bccosA,所以2b22bccosA(1tanA),所以bc(cosAsinA),又由正弦定理知,得sinBsinC(cosAsinA),所以sin(AC)sinC(cosAsinA),即sinAcosCcosAsinCsinCcosAsinCsinA,所以sinAcosCsinCsinA,因为sinA0,所以cosCsinC,所以tanC1,又因为0<C<,所以C.(2)选择条件,cosB,因为cosB,且0<B<,所以sinB,因为sinAsin(BC)sinBcosCsinCcosB××,由正弦定理知,所以a2,在ABD中,由余弦定理知AD2AB2BD22AB·BD·cosB(2)2()22×2××26,所以AD.

    注意事项

    本文(2024年新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形.docx)为本站会员(wo****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开