高中数学知识点:1.3简单的逻辑联结词、全称量词与存在量词.docx
-
资源ID:96551351
资源大小:72.35KB
全文页数:5页
- 资源格式: DOCX
下载积分:3.5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学知识点:1.3简单的逻辑联结词、全称量词与存在量词.docx
简单的逻辑联结词、全称量词与存在量词第一步 知识再现1简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词(2)简单复合命题的真值表:pqpqpq¬p真真真真假假真假真真真假假真假假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等(3)全称量词用符号“”表示;存在量词用符号“”表示3全称命题与特称命题(1)含有全称量词的命题叫全称命题(2)含有存在量词的命题叫特称命题4命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.第二步 重难点、易错点梳理1、逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题2、含有一个量词的命题的否定(1)全称命题的否定是特称命题全称命题p:xM,p(x),它的否定¬p:x0M,¬p(x0)(2)特称命题的否定是全称命题特称命题p:x0M,p(x0),它的否定¬p:xM,¬p(x)3、复合命题的否定(1)綈(pq)(¬p)(¬q);(2)綈(pq)(¬p)(¬q)4、(1)对于“pq”命题:一假则假;(2)对“pq”命题:一真则真;(3)对“¬p”命题:与“p”命题真假相反第三步 题型与方法归纳题型一含有逻辑联结词命题真假的判断【例1】(2010·新课标全国)已知命题p1:函数y2x2x在R上为增函数,p2:函数y2x2x在R上为减函数,则在命题q1:p1p2,q2:p1p2,q3:(¬p1)p2和q4:p1(¬p2)中,真命题是()Aq1,q3 Bq2,q3Cq1,q4 Dq2,q4审题视点 根据复合函数的单调性判断p1,p2的真假解析可判断p1为真,p2为假;则q1为真,q2为假,q3为假,q4为真答案C “pq”、“pq”、“¬q”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“pq”、“pq”、“¬q”形式命题的真假题型二全称命题与特称命题【例2】写出下列命题的否定,并判断其真假(1)p:xR,x2x0;(2)q:所有的正方形都是矩形;(3)r:x0R,x2x020;(4)s:至少有一个实数x0,使x10.审题视点 改变量词,否定结论,写出命题的否定;判断命题的真假解(1)¬p:x0R,xx00,假命题(2)¬q:至少存在一个正方形不是矩形,假命题(3)綈r:xR,x22x20,真命题(4)綈s:xR,x310,假命题 全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论而一般命题的否定只需直接否定结论即可题型三根据命题的真假,求参数的取值范围【例3】(2012·浙大附中月考)已知命题p:方程x2mx10有两个不等的负实数根;命题q:方程4x24(m2)x10无实数根若“p或q”为真命题,“p且q”为假命题,求m的取值范围审题视点 先解不等式将命题p与命题q具体化,然后根据“p或q”与“p且q”的条件可以知道命题p与命题q一真一假,从而求出m的取值范围解由p得:则m2.由q得:216(m2)21616(m24m3)0,则1m3.又“p或q”为真,“p且q”为假,p与q一真一假当p真q假时,解得m3;当p假q真时,解得1m2.m的取值范围为m3或1m2. 含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假,求出此时参数成立的条件,再求出含逻辑联结词的命题成立的条件第四步 真题演练1、【2014高考湖南卷第5题】已知命题在命题中,真命题是( )A B. C. D.2、【2013年普通高等学校招生全国统一考试(四川卷)理科】设,集合是奇数集,集合是偶数集.若命题,则( )(A) (B)(C) (D)3、(2012年高考(辽宁理)已知命题p:x1,x2R,(f(x2)f(x1)(x2x1)0,则p是()(A) x1,x2R,(f(x2)f(x1)(x2x1)0 (B) x1,x2R,(f(x2)f(x1)(x2x1)0(C) x1,x2R,(f(x2)f(x1)(x2x1)<0(D) x1,x2R,(f(x2)f(x1)(x2x1)<04、【山东省实验中学2013届高三第二次诊断性测试】已知,命题,则( ) A.是假命题, B.是假命题, C.是真命题, D.是真命题,