欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《数学广角—鸽巢问题》教学设计(人教版六年级数学下册).docx

    • 资源ID:96666946       资源大小:258.53KB        全文页数:5页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《数学广角—鸽巢问题》教学设计(人教版六年级数学下册).docx

    数学广角鸽巢问题教学设计 教材分析例1:本例描述“抽屉原理”的最简单的情况。着重探讨为什么这样的结论是成立的。教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。这种方法比第一种方法更为抽象,更具有一般性。通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。例2:本例描述“抽屉原理”更为一般的形式,即“把多于kn(k是正整数)个物体任意分放进n个空抽屉里,那么一定有一个抽屉中放进了至少(k+1)个物体”。教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。在具体编排这道例题的时候,在数据上进行了一个很细微的调整。在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进 3个抽屉里,总有一个抽屉至少放进了3本书”。通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样,就可以把“摸球问题”转化为“抽屉问题”。教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。很多学生误以为要摸5次才可以摸出球,这可以让学生通过实验来验证。 教学目标1. 知识与技能:知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。2. 过程与方法:通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。3. 情感态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。 教学重难点把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。 课前准备多媒体课件 教学过程一、情境导入。我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?二、探索新知。例1 把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?学生动手操作:方法一:把各种情况都摆出来。(列举法)方法二:把4分解成3个数。(分解法)例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 此图片是微课缩略图,如需使用此资源,请插入微课“【知识点解析】鸽巢问题1”例2 把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?如果有8本书会怎样呢?10本书呢?方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。8÷32余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。10÷33余1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。问题:你是这样想的吗?你有什么发现?例3 盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?思考:只摸2个球就能保证这2个球同色吗?当摸出的这两个球正好是一红一蓝时就不能同色。解:把红、蓝两种颜色看作两个“鸽巢”,因为3÷22余下1,所以摸出3个球时,至少有2个是同色的。结论:只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。此图片是微课缩略图,如需使用此资源,请插入微课“【知识点解析】鸽巢问题2”三、巩固练习。1. 5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子,为什么?解:3只鸽子分别飞入3只笼子中,剩下的2只分别放入其中2只鸽笼中,那么这两只鸽笼中都有2只鸽子;剩下的2只放入其中一只鸽笼里,那么这只鸽笼就有3只鸽子。所以5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子。2. 你理解上面扑克魔术的道理了吗?解:扑克牌有4种花色,看做4个“鸽巢”,5个人每人抽一张,抽了5张,看做5只“鸽子”;问题就转化为“5只鸽子飞入4个鸽巢,总有一个鸽巢飞入了2只鸽子”。4只鸽子分别飞入4个鸽巢中,剩下的1只飞入其中一个鸽巢,那么总有一个鸽巢飞入了2只鸽子。3. 11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子,为什么?解:11÷42余3只,分别放进其中3只鸽笼中,使其中3只鸽笼都变成3只;放进其中2只鸽笼里,这两只鸽笼中一只鸽笼变成4只鸽子,另一只鸽笼里变成了3只鸽子;放进其中一个鸽笼里,这个鸽笼利就变成了5只鸽子。所以11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子。4. 5人坐4把椅子,总有一把椅子上至少坐2人,为什么?解:5÷41余下1人,这个人坐在其中一个椅子上,那么这把椅子上坐了2个人。所以5人坐4把椅子,总有一把椅子上至少坐2人。5. 向东小学六年级共有367名学生,其中六(2)班有49名学生。(1)六年级里至少有2个人的生日是同一天。(2)六(2)班中至少有5人是同一个月出生的。他们说的对吗?为什么?解:(1)一年最多366天。假设367个学生中366个学生的生日在不同的一天:367÷3661余1个学生,可以看做鸽巢问题,所以六年级里至少有2个人的生日在同一天。(2)一年有12个月。假设49个学生的生日分别在不同的月份:49÷124余1人,看做鸽巢问题,所以六(2)班中至少有5人是同一个月出生的。所以他们的说法正确。6. 把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?解:看作鸽巢问题,5÷41余1,至少取5个球,就能保证取到两个颜色相同的球。拓展思考:把红、蓝、黄3种颜色的筷子各3根混在一起,如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双筷子呢?解:把红、黄、蓝看作3个鸽巢:4÷31余1,每次至少拿出4根能保证一定有2根同色的筷子。保证有2双筷子:一次拿出5根时 ,因为每种颜色各有3根,当一种颜色的筷子拿了3根,其余2种颜色的筷子各拿1根,这时不能保证有2双筷子;一次拿出6根时,有以下情况:红(黄、蓝)蓝(红、黄)黄(蓝、红)222321330这时能保证至少有2双筷子。所以至少拿出6根能保证有2双筷子。四、小结。1. 把具体问题转化成“鸽巢问题”。2. 总结鸽巢问题”解决的方法。5 / 5

    注意事项

    本文(《数学广角—鸽巢问题》教学设计(人教版六年级数学下册).docx)为本站会员(梅****6)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开