2024年初中升学考试模拟测试湖南省娄底市中考数学试卷(解析版).doc
-
资源ID:96813524
资源大小:1.73MB
全文页数:38页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2024年初中升学考试模拟测试湖南省娄底市中考数学试卷(解析版).doc
2023年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1(3分)(2022娄底)2022的倒数是()A2022B2022CD2(3分)(2022娄底)下列式子正确的是()Aa3a2a5B(a2)3a5C(ab)2ab2Da3+a2a53(3分)(2022娄底)一个小组10名同学的出生月份(单位:月)如下表所示:编号12345678910月份26861047887这组数据(月份)的众数是()A10B8C7D64(3分)(2022娄底)下列与2022年冬奥会相关的图案中,是中心对称图形的是()ABCD5(3分)(2022娄底)截至2022年6月2日,世界第四大水电站云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿吨5000亿用科学记数法表示为()A50×1010B5×1011C0.5×1012D5×10126(3分)(2022娄底)一条古称在称物时的状态如图所示,已知180°,则2()A20°B80°C100°D120°7(3分)(2022娄底)不等式组的解集在数轴上表示正确的是()ABCD8(3分)(2022娄底)将直线y2x+1向上平移2个单位,相当于()A向左平移2个单位B向左平移1个单位C向右平移2个单位D向右平移1个单位9(3分)(2022娄底)在古代,人们通过在绳子上打结来计数,即“结绳计数”当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A1335天B516天C435天D54天10(3分)(2022娄底)如图,等边ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边ABC的内心成中心对称,则圆中的黑色部分的面积与ABC的面积之比是()ABCD11(3分)(2022娄底)在平面直角坐标系中,O为坐标原点,已知点P(m,1)、Q(1,m)(m0且m1),过点P、Q的直线与两坐标轴相交于A、B两点,连接OP、OQ,则下列结论中成立的有()点P、Q在反比例函数y的图象上;AOB为等腰直角三角形;0°POQ90°;POQ的值随m的增大而增大ABCD12(3分)(2022娄底)若10xN,则称x是以10为底N的对数记作:xlgN例如:102100,则2lg100;1001,则0lg1对数运算满足:当M0,N0时,lgM+lgNlg(MN)例如:lg3+lg5lg15,则(lg5)2+lg5×lg2+lg2的值为()A5B2C1D0二、填空题(本大题共6小题,每小题3分,满分18分)13(3分)(2022娄底)函数y的自变量x的取值范围是 14(3分)(2022娄底)已知实数x1,x2是方程x2+x10的两根,则x1x2 15(3分)(2022娄底)黑色袋子中装有质地均匀,大小相同的编号为115号台球共15个,搅拌均匀后,从袋中随机摸出1个球,则摸出的球编号为偶数的概率是 16(3分)(2022娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD的黄金分割点,即DE0.618AD延长HF与AD相交于点G,则EG DE(精确到0.001)17(3分)(2022娄底)菱形ABCD的边长为2,ABC45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为 18(3分)(2022娄底)如图,已知等腰ABC的顶角BAC的大小为,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转角度时点D落在D处,连接BD给出下列结论:ACDABD;ACBADD;当BDCD时,ADD的面积取得最小值其中正确的结论有 (填结论对应的应号)三、解答题(本大题共2小题,每小题6分,共12分)19(6分)(2022娄底)计算:(2022)0+()1+|1|2sin60°20(6分)(2022娄底)先化简,再求值:(x+2+)÷,其中x是满足条件x2的合适的非负整数四、解答题(本大题共2小题,每小题8分,共16分)21(8分)(2022娄底)按国务院教育督导委员会办公室印发的关于组织责任督学进行“五项管理”督导的通知要求,各中小学校积极行动,取得了良好的成绩某中学随机抽取了部分学生对他们一周的课外阅读时间(A:10h以上,B:8h10h,C:6h8h,D:6h以下)进行问卷调查,将所得数据进行分类,统计绘制了如下不完整的统计图请根据图中的信息,解答下列问题:(1)本次调查的学生共 名;(2)a ,b ;(3)补全条形统计图22(8分)(2022娄底)“体育承载着国家强盛、民族振兴的梦想”墩墩使用握力器(如实物图所示)锻炼手部肌肉如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ3cm开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知PBC120°,求BC的长注:弹簧的弹力与形变成正比,即Fkx,k是劲度系数,x是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则xxx0五、解答题(本大题共2小题,每小题9分,共18分)23(9分)(2022娄底)“绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶问这三棵银杏树一年的平均滞尘总量约多少千克?24(9分)(2022娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O设G(1)求证:无论为何值,EF与BC相互平分;并请直接写出使EFBC成立的值(2)当90°时,试给出tanABC的值,使得EF垂直平分AC,请说明理由六、综合题(本大题共2小题,每小题10分,共20分)25(10分)(2022娄底)如图,已知BD是RtABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的O经过点D,与OA相交于点E(1)判定AC与O的位置关系,为什么?(2)若BC3,CD,求sinDBC、sinABC的值;试用sinDBC和cosDBC表示sinABC,猜测sin2与sin、cos的关系,并用30°给予验证26(10分)(2022娄底)如图,抛物线yx22x6与x轴相交于点A、点B,与y轴相交于点C(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0m6)在抛物线上,当m取何值时,PBC的面积最大?并求出PBC面积的最大值(3)点F是抛物线上的动点,作FEAC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由2022年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1(3分)(2022娄底)2022的倒数是()A2022B2022CD【分析】根据倒数的定义即可得出答案【解答】解:2022的倒数是故选:C【点评】本题考查了倒数,掌握乘积为1的两个数互为倒数是解题的关键2(3分)(2022娄底)下列式子正确的是()Aa3a2a5B(a2)3a5C(ab)2ab2Da3+a2a5【分析】根据幂的乘方与积的乘方,合并同类项,同底数幂的乘法法则,进行计算逐一判断即可解答【解答】解:A、a3a2a5,故A符合题意;B、(a2)3a6,故B不符合题意;C、(ab)2a2b2,故C不符合题意;D、a3与a2不能合并,故D不符合题意;故选:A【点评】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键3(3分)(2022娄底)一个小组10名同学的出生月份(单位:月)如下表所示:编号12345678910月份26861047887这组数据(月份)的众数是()A10B8C7D6【分析】根据众数的意义求出众数即可【解答】解:这10名同学的出生月份出现次数最多的是8,共出现3次,因此众数是8,故选:B【点评】本题考查众数,理解众数的意义是解决问题的前提,掌握众数的意义是解决问题的关键4(3分)(2022娄底)下列与2022年冬奥会相关的图案中,是中心对称图形的是()ABCD【分析】根据中心对称图形的概念进行判断即可【解答】解:A不是中心对称图形,故此选项不合题意;B不是中心对称图形,故此选项不合题意;C不是中心对称图形,故此选项不合题意;D是中心对称图形,故此选项符合题意;故选:D【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与自身重合5(3分)(2022娄底)截至2022年6月2日,世界第四大水电站云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿吨5000亿用科学记数法表示为()A50×1010B5×1011C0.5×1012D5×1012【分析】根据5000亿500000000000,再用科学记数法的表示即可【解答】解:5000亿5000000000005×1011,故选:B【点评】本题主要考查科学记数法的知识,熟练掌握科学记数法的形式是解题的关键6(3分)(2022娄底)一条古称在称物时的状态如图所示,已知180°,则2()A20°B80°C100°D120°【分析】根据平行线的性质和平角的定义可得结论【解答】解:如图,由平行线的性质得:3180°,2+3180°,2180°80°100°故选:C【点评】本题考查了平行线的性质和平角的定义,掌握两直线平行,内错角相等是解本题的关键7(3分)(2022娄底)不等式组的解集在数轴上表示正确的是()ABCD【分析】先求出不等式组的解集,再确定符合条件的选项【解答】解:,解,得x2,解,得x1所以原不等式组的解集为:1x2故符合条件的选项是C故选:C【点评】本题考查了解一元一次不等式组,掌握不等式组的解法是解决本题的关键8(3分)(2022娄底)将直线y2x+1向上平移2个单位,相当于()A向左平移2个单位B向左平移1个单位C向右平移2个单位D向右平移1个单位【分析】根据直线ykx+b平移k值不变,只有b发生改变解答即可【解答】解:将直线y2x+1向上平移2个单位后得到新直线解析式为:y2x+1+2,即y2x+3由于y2x+32(x+1)+1,所以将直线y2x+1向左平移1个单位即可得到直线y2x+3所以将直线y2x+1向上平移2个单位,相当于将直线y2x+1向左平移1个单位故选:B【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键9(3分)(2022娄底)在古代,人们通过在绳子上打结来计数,即“结绳计数”当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A1335天B516天C435天D54天【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为5,3×7,3×7×7和1×7×7×7,然后把它们相加即可【解答】解:孩子自出生后的天数是:1×7×7×7+3×7×7+3×7+5343+147+21+5516,答:那么孩子已经出生了516天故选:B【点评】本题考查了用数字表示事件本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力10(3分)(2022娄底)如图,等边ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边ABC的内心成中心对称,则圆中的黑色部分的面积与ABC的面积之比是()ABCD【分析】根据题意和图形,可知圆中的黑色部分的面积是圆的面积的一半,然后即可计算出圆中的黑色部分的面积与ABC的面积之比【解答】解:作ADBC于点D,作BEAC于点E,AD和BE交于点O,如图所示,设AB2a,则BDa,ADB90°,ADa,ODADa,圆中的黑色部分的面积与ABC的面积之比是:,故选:A【点评】本题考查等边三角形的性质、圆的面积、三角形的内切圆与内心,解答本题的关键是明确题意,利用数形结合的思想解答11(3分)(2022娄底)在平面直角坐标系中,O为坐标原点,已知点P(m,1)、Q(1,m)(m0且m1),过点P、Q的直线与两坐标轴相交于A、B两点,连接OP、OQ,则下列结论中成立的有()点P、Q在反比例函数y的图象上;AOB为等腰直角三角形;0°POQ90°;POQ的值随m的增大而增大ABCD【分析】根据反比例函数图象上点的坐标特征即可判断;根据P、Q点的坐标特征即可判断;求得直线OP、OQ的解析式,根据正比例函数的系数即可判断【解答】解:点P(m,1)、Q(1,m)(m0且m1),则m11mm,点P、Q在反比例函数y的图象上,故正确;设直线PQ为ykx+b,则,解得,直线PQ为yx+m+1,当y0时,xm+1;当x0时,ym+1,A(m+1,0),B(0,m+1),OAOB,AOB90°,AOB为等腰直角三角形,故正确;点P(m,1)、Q(1,m)(m0且m1),P、Q都在第一象限,0°POQ90°,故正确;直线OP为yx,直线OQ为ymx,当0m1时,POQ的值随m的增大而减小,当m1时,POQ的值随m的增大而增大,故错误;故选:D【点评】本题考查了反比例函数图象上点的坐标特征,一次函数图象上点的坐标特征,等腰直角三角形的判定等,数形结合是解题的关键12(3分)(2022娄底)若10xN,则称x是以10为底N的对数记作:xlgN例如:102100,则2lg100;1001,则0lg1对数运算满足:当M0,N0时,lgM+lgNlg(MN)例如:lg3+lg5lg15,则(lg5)2+lg5×lg2+lg2的值为()A5B2C1D0【分析】首先根据定义运算提取公因式,然后利用定义运算计算即可求解【解答】解:原式lg5(lg5+lg2)+lg2lg5×lg(5×2)+lg2lg5lg10+lg2lg5+lg2lg101故选:C【点评】本题主要考查了定义运算,实际上是对数的运算,读懂题目意思是关键二、填空题(本大题共6小题,每小题3分,满分18分)13(3分)(2022娄底)函数y的自变量x的取值范围是 x1【分析】根据(a0),以及分母不能为0,可得x10,然后进行计算即可解答【解答】解:由题意得:x10,解得:x1,故答案为:x1【点评】本题考查了函数自变量的取值范围,熟练掌握(a0),以及分母不能为0是解题的关键14(3分)(2022娄底)已知实数x1,x2是方程x2+x10的两根,则x1x21【分析】根据根与系数的关系解答【解答】解:方程x2+x10中的ab1,c1,x1x21故答案是:1【点评】此题主要考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x215(3分)(2022娄底)黑色袋子中装有质地均匀,大小相同的编号为115号台球共15个,搅拌均匀后,从袋中随机摸出1个球,则摸出的球编号为偶数的概率是 【分析】根据题意和题目中的数据,可以得到一共有多少种可能性,其中摸出编号是偶数的有多少种可能性,从而可以求得摸出的球编号为偶数的概率【解答】解:由题意可得,从袋中随机摸出1个球,一共有15种可能性,其中摸出编号是偶数的有7种可能性,故摸出的球编号为偶数的概率是,故答案为:【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率16(3分)(2022娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD的黄金分割点,即DE0.618AD延长HF与AD相交于点G,则EG0.618DE(精确到0.001)【分析】根据黄金分割的定义可得0.618,再根据题意可得EGAE,即可解答【解答】解:点E是AD的黄金分割点,且DE0.618AD,0.618,由题意得:EGAE,0.618,EG0.618DE,故答案为:0.618【点评】本题考查了黄金分割,近似数和有效数字,熟练掌握黄金分割的定义是解题的关键17(3分)(2022娄底)菱形ABCD的边长为2,ABC45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为 【分析】连接AQ,作AHBC于H,利用SAS证明ABQCBQ,得AQCQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,再求出AH的长即可【解答】解:连接AQ,作AHBC于H,四边形ABCD是菱形,ABCB,ABQCBQ,BQBQ,ABQCBQ(SAS),AQCQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,AB2,ABC45°,AH,CQ+PQ的最小值为,故答案为:【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,轴对称的性质等知识,将CQ+PQ的最小值转化为AH的长是解题的关键18(3分)(2022娄底)如图,已知等腰ABC的顶角BAC的大小为,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转角度时点D落在D处,连接BD给出下列结论:ACDABD;ACBADD;当BDCD时,ADD的面积取得最小值其中正确的结论有 (填结论对应的应号)【分析】由题意可知ACAB,ADAD,CADBAD,即可根据SAS判断ACDABD;根据BACDAD,即可判断ACBADD;由ACBADD,得出()2,根据等腰三角形三线合一的性质,当BDCD,则ADBC时,AD最小,ADD的面积取得最小值【解答】解:由题意可知ACAB,ADAD,CADBAD,ACDABD,故正确;ACAB,ADAD,BACDAD,ACBADD,故正确;ACBADD,()2,当ADBC时,AD最小,ADD的面积取得最小值而ABAC,BDCD,当BDCD时,ADD的面积取得最小值,故正确;故答案为:【点评】本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,垂线段最短以及等腰三角形三线合一的性质,三角形掌握这些性质是解题的关键三、解答题(本大题共2小题,每小题6分,共12分)19(6分)(2022娄底)计算:(2022)0+()1+|1|2sin60°【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减【解答】解:原式1+2+12×1+2+12【点评】本题考查了实数的运算,掌握零指数幂、负整数指数幂、绝对值的意义及特殊角的函数值是解决本题的关键20(6分)(2022娄底)先化简,再求值:(x+2+)÷,其中x是满足条件x2的合适的非负整数【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算即可【解答】解:原式(+)÷,x0且x20,x0且x2,x1,则原式1【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则四、解答题(本大题共2小题,每小题8分,共16分)21(8分)(2022娄底)按国务院教育督导委员会办公室印发的关于组织责任督学进行“五项管理”督导的通知要求,各中小学校积极行动,取得了良好的成绩某中学随机抽取了部分学生对他们一周的课外阅读时间(A:10h以上,B:8h10h,C:6h8h,D:6h以下)进行问卷调查,将所得数据进行分类,统计绘制了如下不完整的统计图请根据图中的信息,解答下列问题:(1)本次调查的学生共 200名;(2)a30,b50;(3)补全条形统计图【分析】(1)根据D类人数以及所占的百分比即可求解;(2)根据总数以及A类、B类的人数即可求解;(3)根据C类所占的百分比,求出C类人数,即可补全条形统计图【解答】解:(1)本次调查的学生共:10÷5%200(名),故答案为:200;(2)a×10030,b×10050,故答案为:30,50;(3)C类人数为200×15%30,补全条形统计图如图:【点评】本题考查扇形统计图、条形统计图,理解两个统计图中数量之间的关系是正确解答的关键22(8分)(2022娄底)“体育承载着国家强盛、民族振兴的梦想”墩墩使用握力器(如实物图所示)锻炼手部肌肉如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ3cm开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知PBC120°,求BC的长注:弹簧的弹力与形变成正比,即Fkx,k是劲度系数,x是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则xxx0【分析】由题意可以先求出k的值,然后即可求出PC的长,再根据勾股定理即可得到PA和AB的长,由图可知:BCACAB,代入数据计算即可【解答】解:由题意可得,x03cm,100k(43),解得k100,F100x,当F300时,300100×(PC3),解得PC6cm,由图可得,PAB90°,PBC120°,APB30°,PB4cm,AB2cm,PA2(cm),PC5cm,AC2(cm),BCACAB(22)cm,即BC的长是(22)cm【点评】本题考查解直角三角形的应用、正比例函数,解答本题的关键是求出k的值,以及AC和AB的值五、解答题(本大题共2小题,每小题9分,共18分)23(9分)(2022娄底)“绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶问这三棵银杏树一年的平均滞尘总量约多少千克?【分析】(1)设一片银杏树叶一年的平均滞尘量为xmg,一片国槐树叶一年的平均滞尘量为ymg,由题意:一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg列出二元一次方程组,解方程组即可;(2)由(1)的结果列式计算即可【解答】解:(1)设一片银杏树叶一年的平均滞尘量为xmg,一片国槐树叶一年的平均滞尘量为ymg,由题意得:,解得:,答:一片银杏树叶一年的平均滞尘量为40mg,一片国槐树叶一年的平均滞尘量为22mg;(2)50000×402000000(mg)2kg,答:这三棵银杏树一年的平均滞尘总量约2千克【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键24(9分)(2022娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O设G(1)求证:无论为何值,EF与BC相互平分;并请直接写出使EFBC成立的值(2)当90°时,试给出tanABC的值,使得EF垂直平分AC,请说明理由【分析】(1)证明四边形DEGF是平行四边形,可得结论;(2)当tanABC2时,EF垂直平分线段AC证明OJAC,可得结论【解答】(1)证明:四边形BCFG,四边形BCDE都是菱形,CFBG,CDBE,CBCFCDBGBE,D,C,F共线,G,B,E共线,DFEG,DFGE,四边形DEGF是平行四边形,EF与BC互相平分当EFFG时,GFBGBE,EG2GF,GEF30°,90°30°60°;(2)解:当tanABC2时,EF垂直平分线段AC理由:如图(2)中,设AC交EF于点J四边形BCFG是菱形,GFCO90°,EF与BC互相平分,OCOB,CFBC,FC2OC,tanFOCtanABC,ABCFOC,OJAB,OCOB,CJAJ,BC是直径,BACOJC90°,EF垂直平分线段AC【点评】本题考查菱形的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型六、综合题(本大题共2小题,每小题10分,共20分)25(10分)(2022娄底)如图,已知BD是RtABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的O经过点D,与OA相交于点E(1)判定AC与O的位置关系,为什么?(2)若BC3,CD,求sinDBC、sinABC的值;试用sinDBC和cosDBC表示sinABC,猜测sin2与sin、cos的关系,并用30°给予验证【分析】(1)连接OD,证明ODBC,则ODAC90°,再根据圆的切线的判定定理证明AC是O的切线;(2)根据三角函数定义可得结论;计算cosDBC的值,并计算2sinDBCcosDBC的值,可得结论:sinABC2sinDBCcosDBC;并用30°可得结论【解答】解:(1)AC是O切线,理由如下:如图,连接OD,ODOB,ODBOBD,BD是ABC的角平分线,OBDDBC,ODBDBC,ODBC,ODAC90°,OD是O的半径,且ACOD,AC是O的切线;(2)在RtDBC中,BC3,CD,BD,sinDBC,如图2,连接DE,OD,过点O作OGBC于G,ODCCCGO90°,四边形ODCG是矩形,OGCD,BE是O的切线,BDE90°,cosDBEcosCBD,BE,OBBE,sinABC;2sinDBCcosDBC2××,sinABC2sinDBCcosDBC;猜想:sin22sincos,理由如下:当30°时,sin2sin60°,2sincos2××,sin22sincos【点评】此题重点考查圆的切线的判定、矩形的判定与性质、勾股定理、三角函数的定义等知识,解题的关键是正确的作出所需要的辅助线,掌握三角函数的定义进行解题26(10分)(2022娄底)如图,抛物线yx22x6与x轴相交于点A、点B,与y轴相交于点C(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0m6)在抛物线上,当m取何值时,PBC的面积最大?并求出PBC面积的最大值(3)点F是抛物线上的动点,作FEAC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由【分析】(1)将x0及y0代入抛物线yx22x6的解析式,进而求得结果;(2)连接OP,设点P(m,2m6),分别表示出SPOC,SBOP,计算出SBOC,根据SPBCS四边形PBOCSBOC,从而得出PBC的函数关系式,进一步求得结果;(3)可分为ACFE和ACEF的情形当ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当ACED时,可推出点F的纵坐标为6,进一步求得结果【解答】解:(1)当x0时,y6,C(0,6),当y0时,x22x60,x16,x22,A(2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,2m6),SPOCxP3m,SBOP|yP|+2m+6),SBOC18,SPBCS四边形PBOCSBOC(SPOC+SPOB)SBOC3m+3(+2m+6)18(m3)2+,当m3时,SPBC最大;方法二:如图2,作PQAB于Q,交BC于点D,B(6,0),C(0,6),直线BC的解析式为:yx6,D(m,m6),PD(m6)(2m6)+3m,SPBC(m3)2+,当m3时,SPBC最大;(3)如图3,当ACFE时,AECF,抛物线对称轴为直线:x2,F1点的坐标:(4,6),如图4,当ACEF时,作FGAE于G,FGOC6,当y6时,x22x66,x12+2,x222,F2(2+2,6),F3(22,6),综上所述:F(4,6)或(2+2,6)或(22,6)【点评】本题考查了二次函数及其图象性质,平行四边形的分类等知识,解决问题的关键是正确分类,画出图形,转化条件声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/6/24 第38页(共38页)