《有机化学》第六版.doc
有机化学(第六版)讲稿第一章 绪论 (Introduction ) 教学要求: 掌握:碳原子的三种杂化轨道(sp3 sp2 sp)的特点;分子极性与偶极矩的关系;分子轨道与原子轨道的关系; 成键轨道与反键轨道的差异;共振式与共振杂化体的区别;熟悉:有机化合物和有机化学的含义;键长、键角、键能和共价键的极性的含义;官能团的含义和圭要官能团;有机反应中共价键断裂的主要方式; 实验式、分子式和结构式的含义。了解: 有机化合物分子中,原子间主要以共价键相结合。掌握共价键的本质是学习和理解有机化合物结构与性质关系和反应机制以及化合物稳定性的基础。因此本章对路易斯结构和现代价键理论作一简要回顾;有些化合物的结构用单一路易斯结构式不能准确表达,然而运用共振结构却有它的独到之处,为此对共振结构作一简介;掌握路易斯酸碱概念对理解有机反应十分有用,故将其作为一个知识点加以阐述。了解有机化合物分类和反应类型及确定结构式的步骤与方法对提高学习有机化学的综合分析能力也是十分必要的,本章对此方面内容作一扼要介绍。第一节 有机化合物和有机化学 一、有机化合物和有机化学下面是一些简单而熟悉的有机化合物,他们在化学组成上有什么共同点? u 有机化合物含碳的化合物或碳氢化合物及其衍生物。u 有机化学: 有机化学的现代定义是指研究含碳化合物的化学。第二节 共价键 一、现代共价键理论路易斯的共价键理论虽然揭示了共价键与离子键的区别,但未能说明共价键是怎样形成的,也不能解释共价键为什么具有饱和性和方向性等诸多问题。现代共价键理论指出:当两个原子互相接近到一定距离时,自旋方向相反的单电子相互配对(即两原子轨道重叠)。使电子云密集于两核之间,降低了两核间正电荷的排斥,增加了两核对电子云密集区域的吸引。因此使体系能量降低,形成稳定的共价键;共价键有以下特点: 第一、每个原子所形成共价键的数目取决于该原子中的单电子数目,这就是共价键具有饱和性。第二、当形成共价键时,原子轨道重叠越多,核间电子云越密集,形成的键就越强,这种关系称为最大重叠原理。第三、共价键的形成必须尽可能沿着原子轨道最大程度重叠的方向进行,这就是共价键具有方向性三、杂化轨道 在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种: sp3、sp2和sp杂化轨道。它们的杂化过程是怎样的呢?让我们看看杂化过程动态图:(点击图片下的链接出现杂化动画)sp sp2 sp3碳原子经sp3、sp2和sp杂化之后,碳原子核周围的杂化轨道是怎样排列的呢?u sp3杂化轨道碳原子在基态时的电子构型为 。按理只有2px和 2py可以形成共价键,键角应为90°。但实际在甲烷分子中,是四个完全等同的键,键角均为109°28´。这是因为在成键过程中,碳的2s轨道有一个电子激发到2Pz轨道,成为 。然 后3个p轨道与一个s轨道重新组合杂化,形成4个完全相同的sp3杂化轨道。其形状一头大一头小。每个轨道是由s/4与3P/4轨道杂化组成。这四个sp3轨道的方向都指向正四面体的四个顶点, sp3轨道间的夹角是109°28´(见下图)。 烷经和其他化合物分子中的饱和碳原子均为sp3杂化。u sp2杂化轨道碳原子在成键过程中,首先是碳的基态2s轨道中的一个电子激发到2Pz空轨道,然后碳的激发态中一个2s轨道和二个2P轨道重新组合杂化,形成三个相同的sp2杂化轨道。每一个sp2杂化轨道均由 s/3与2p/3轨道杂化组成,这三个sp2杂化轨道在同一平面,夹角为120°。未参与杂化的2Pz轨道,垂直于三个sp2杂化轨道所处的平面(见下图)。烯烃分子中构成双键的碳原子和其他不饱和化合物分子中构成双键的碳原子均为sp2杂化。u sp杂化轨道sp杂化轨道是碳原子在成键过程中,碳的激发态的一个2s轨道与一个2P轨道重新组合杂化形成两个相同的sp杂化轨道。这两个轨道夹角为180°,呈直线形。未参与杂化的两个互相垂直的P轨道又都垂直于sp杂化轨道(见下图)。炔烃分子中碳碳三键的碳原子和其他化合物中含有三键的碳原子均为sp2杂化。问题1-2 试写出碳原子sp杂化过程示意图。四、共价键的属性键的属性指键长、键角、键能和键的极性等物理量。共价键的属性是阐述有机化合物结构和性质的基础。键长:键长通常指成键两原子核间距离,键长单位以pm表示。键长主要取决于两个原子的成键类型:CC单键比C=C双键长,后者又比CC三键长。CH键的键长还与成键碳原子的杂化方式有关:键长受与其相连的其他原子或基团的影响较小。通常可根据键长判断两原子间的成键类型。表1-1列出几种共价键的键长键角 分子中一个原子与另外两个原子形成的两个共价键在空间所夹的角称为键角。在有机分子中饱和碳的四个键的键角为109°28´,或接近109°28´分子方才稳定。在分子内,键角可受其他原子影响而变化,若改变过大就会影响分子的稳定性。(见第一章环烷烃)键能以共价键结合的双原子分子裂解成原子时所吸收的能量称为该种共价键的键能,又可称为离解能。也就是说双原子分子的键能等于其离解能。然而对于多原子分子,键能不同于其离解能。离解能是裂解分子中某一个共价键时所需的能量,而键能则是指分子中同种类型共价键离解能的平均值。例如,甲烷有四个碳氢键,其离解能分别如下:甲烷分子中CH键的键能则为上述四个CH键离解能的平均值(415.3kJmol-1)。从键能的大小可以知道键的稳定性,键能越大,键越稳定。共价键的极性: 由两个相同原子组成的分子,如氢分子(HH)或氯分子,成键的一对电子均等地分配在两个原子之间,这种键称为非极性共价键;不同原子形成的共价键。由于电负性的差异,成键电子云总是靠近电负性较大的原子,使其带部分负电荷,通常以-表示,电负性较小的原子则带部分正电荷,以+表示。例如一氯甲烷分子中的碳-氯键:这种成键电子云不是平均分配在成键两个原子核之间的共价键称为极性共价键。共价键的极性取决于成键的两个原子的电负性之差,差值越大,键的极性越大。一般两元素的电负性差值等于或大于1.7为离子键;小于1.7为共价键,其中电负性差值在0.71.6为极性共价键。部分元素的电负性相对值见表1-2。问题1-3 什么叫元素的电负性?第二节 分子的极性一、分子的偶极矩 由于分子中不同原子的电负性不同,电荷分布就可能不均匀,正电荷中心与负电荷中心不能重合,其各在空间集中一点,即在空间具有两个大小相等、符号相反的电荷,构成一个偶极。分子中正电荷或负电荷中心上的电荷值e乘以正负电荷中心之间的距离d,称为分子的偶极矩(dipole moment),用表示。 偶极矩的大小标志着不同分子的相对极性。具有偶极矩的分子为极性分子。=0为非极性分子。典型的极性有机分子的偶极矩()一般在1-3D范围内。一些分子的偶极矩见表1-3。二、分子的相对极性两个原子组成的分子,键的极性就是分子的极性。在两个以上原子组成的分子中,分的极性是分子中每个键的极性的向量和。因此分子的极性不仅取决于各个键的极性,也取决于键的方向,取即决于分子的形状。有的分子虽然各化学键有极性,但整个分子并没有极性。例如:二氧化碳虽然有两个极性的C=O键,但是由于它是线性对称的分子,键的极性互相抵消了,偶极矩为零,分子没有极性,;四氯化碳分子,碳氯键都是极性键,但是它的偶极矩为零,这也是由于完全对称的正四面体排列,使其极性正好彼此抵消;在氯甲烷中,主要是碳-氯键的极性决定分子的极性,其分子偶极矩为1 .94D。分子极性越大,分子间相互作用力就越大。因此分子极性的大小影响化合物的沸点、溶解度等物理性质。第四节 有机化合物的官能团和反应类型一、官能团一种是根据分子中碳原子的连接方式(即按碳的骨架)可分成开链化合物和环状化合物。开链化合物,是指碳原子相互结合成链状化合物,由于脂肪类化合物具有这种开链的骨架,因此开链化合物习惯称为脂肪族化合物。此类化合物的实例可见第二章烷烃和第三章的烯烃和炔烃等化合物。环状化合物,可根据成环的原子种类分成碳环化合物和杂环化合物。碳环化合物完全由碳原子组成的碳环,此类化合物中含有苯环的化合物称为芳香族化合物(见第五章芳香烃),不含苯环的碳环化合物称为脂环化合物(见第二章环烷烃)。杂环化合物是指成环的原子除了碳原子外,还有其他杂原子,如氧、硫或氮等原子,此类化合物的结构可见第十四章杂环化合物。 另一种分类方法是按官能团分类。在有机化合物分子中能体现一类化合物性质的原子或原子团通常称为官能团或功能基。例如CH3OH、C2H5OH、CH3CH2CH2OH等醇类化合物中都含有羟基(-OH),羟基就是醇类化合物的官能团。由于它们含有相同的官能团,因此醇类化合物有雷同的理化性质。有机化合物按官能团分类,便于认识含相同官能团的一类化合物的共性。可以起到举一反三的作用。本书就是按照官能团分类展现有机化学的基础内容。一些常见官能团见表1-4。二、有机化合物反应类型有机反应不同于无机的正负离子反应,能在瞬间即可将反应物转化成产物。大多数有机反应时间比较长,往往要经过好几步中间过程,形成不稳定的中间体或过渡态。就某一个反应来说,须经过几步?每步反应又是如何进行的?其中哪一步是决定反应速率的一步?这些总称为反应机制。有关具体反应机制,在以后的有关章节中阐述。这儿只简单介绍共价键在有机反应中断裂的主要方式。有机反应涉及反应物的旧键的断裂和新键的形成。键的断裂主要有两种方式:均裂和异裂。均裂:均裂是指在有机反应中,键均等地分裂成两个中性碎片过程。原来成键的两个原子,均裂之后各带有一个未配对的电子。如下式所示:带有单电子的原子或原子团称为自由基或游离基。上述带有单电子的碳为碳自由基。这种经过均裂生成自由基的反应叫作自由基反应。反应一般在光、热或过氧化物(ROOR)存在下进行。自由基只是在反应中作为活泼中间体出现,它只能在瞬间存在异裂:异裂是指在有机反应中键非均等地分裂成两个带相反电荷的碎片过程。即原来成键的两个原子,异裂之后,一个带正电荷,另一个带负电荷。 这种异裂后生成带正电荷和带负电荷的原子或原子基团过程的反应,称为离子型反应。带正电荷的碳原子称为正碳离子,带负电荷的碳原子称为负碳离子。无论是正碳离子还是负碳离子都是非常不稳定的中间体。都只能在瞬间存在。但它对反应的发生却起着不可替代的作用。有机的离子型反应一般发生在极性分子之间,通过共价键的异裂,首先形成正碳离子或负碳离子中间体而逐步完成反应。总 结有机化合物一般指含碳的化合物。不过CO 、CO2 、H2CO3和碳酸盐等要除外,因为这些化合物的性质与无机化合物相同。有机化学的现代定义是指研究含碳化合物的化学。有机化合物分子主要是以共价键相结合。共价键有三个特点:第一、具有饱和性、具有方向性。在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种: sp3、sp2和sp杂化轨道。分子的极性是分子中每个键的极性的向量和。因此分子的极性不仅取决于各个键的极性,也取决于键的方向。即取决于分子的形状。有的分子虽然各化学键有极性,但整个分子并没有极性。偶极矩的大小标志着不同分子的相对极性。具有偶极矩的分子为极性分子。=0为非极性分子。分子极性越大,分子间相互作用力就越大。因此分子极性的大小影响化合物的沸点、溶解度等物理性质。有机化合物分类通常有两种方法:一种是根据分子中碳原子的连接方式(即按碳的骨架)可分成开链化合物和环状化合物。开链化合物习惯称为脂肪族化合物。环状化合物中含有苯环的化合物称为芳香族化合物。另一种分类方法是按官能团分类。在有机化合物分子中能体现一类化合物性质的原子或原子团通常称为官能团或功能基。有机化合物按官能团分类,便于认识含相同官能团的一类化合物的共性。可以起到举一反三的作用。有机反应涉及反应物的旧键的断裂和新键的形成。键的断裂主要有两种方式:均裂和异裂。均裂:均裂是指在有机反应中,键均等地分裂成两个中性碎片过程。原来成键的两个原子,均裂之后各带有一个未配对的电子。异裂:异裂是指在有机反应中键非均等地分裂成两个带相反电荷的碎片过程。即原来成键的两个原子,异裂之后,一个带正电荷,另一个带负电荷。带正电荷的碳原子称为正碳离子,带负电荷的碳原子称为负碳离子。无论是正碳离子还是负碳离子都是非常不稳定的中间体。都只能在瞬间存在。但它对反应的发生却起着不可替代的作用。分子轨道是原子轨道的线性组合。其数目与原子轨道数相等,也就是说有几个原子轨道就有几个分子轨道。两个原子轨道组合成两个分子轨道;一个是成键轨道,比组成它的原子轨道能量低,稳定。另一个为反键轨道,比组成它的原子轨道能量高、不稳定。在一般情况下,分子的反键轨道内没有电子,只有当分子呈激发状态时才有电子。由原子轨道组成分子轨道,成键的原子轨道必须满足三个原则: 能量相近。 电子云最大重叠原则。对称性匹配原则。第二章 烷烃和环烷(lkane and Cycloalkane)教学要求:掌握:烷烃、环烷烃的结构;烷烃构造异构、环烷烃几何异构的概念及命名;烷烃、环烷烃、螺环烃、桥环烃的命名;烷烃、环烷烃的构象异构及其写法;取代环己烷的优势构象;烷烃的自由基取代反应及小环烷烃的特殊性。熟悉:烃的分类;烷烃、环烷烃的物理性质;自由基的构型及其稳定性。了解:烃的来源及其在日常生活、医学上的用途。 第一节 烷烃(Alkane )仅由碳和氢两种元素组成的化合物称为碳氢化合物,简称为烃(hydrocarbon)。烃的分类:一烷烃的结构烷烃属于饱和烃,其分子中所有碳原子均为SP3杂化,分子内的键均为s键,成键轨道沿键轴“头对头”重叠,重叠程度较大,键较稳定,可沿键轴自由旋转而不影响成键。)甲烷是烷烃中最简单的分子,其成键方式如下: 碳原子sp3杂化, 4个sp3杂化轨道分别与4个氢原子的S轨道重叠,形成4个CH键,4个CH键间的键角109°28,空间呈正四面体排布,相互间距离最远,排斥力最小,能量最低,体系最稳定,C-H键长110pm。乙烷是含有两个碳的烷烃,其结构如下:图22乙烷的结构两个碳原子各以sp3 杂化轨道重叠形成CC键,余下的杂化轨道分别和6个氢原子的s轨道重叠形成六个CH键。C-C键长154pm,C-H键长110pm 。其他烷烃的成键方式同乙烷相似。 烷烃的通式、同系列烷烃的分子组成可用通式CnH2n+2表示。 具有相同分子通式和结构特征的一系列化合物称为同系列(homologous series)。如:CH4 CH3CH3CH3CH2CH3 ;同系列中的各化合物互称为同系物(homolog);相邻两个同系物在组成上的不变差数CH2 称为同系列差。如:乙烷较甲烷多CH2,丙烷较乙烷多CH2 ;同系物的结构相似,化学性质也相似,物理性质则随着碳原子数的增加而呈现规律性的变化,同系列中的第一个化合物常具有特殊的性质。 烷烃中碳原子的类型烷烃中的各个碳原子均为饱和碳原子,按照与它直接相连的其他碳原子的个数,可分为伯、仲、叔、季碳原子。伯碳原子又称一级碳原子(primary carbon),以1°表示,是只与1 个其他碳原子直接相连的碳原子。仲碳原子又称二级碳原子(secondary carbon),以2°表示,是与2个其他碳原子直接相连的碳原子。叔碳原子又称三级碳原子(tertiary carbon),以3°表示,是与3个其他碳原子直接相连的碳原子。季碳原子又称四级碳原子(quaternary carbon),以4° 表示,是与4个其他碳原子直接相连的碳原子。例如: 该化合物有五个1°碳、一个2°碳、一个3°碳、一个4°碳。 伯、仲、叔碳原子上的氢原子(季碳原子上无氢原子),分别称为伯氢原子(1°氢原子)、仲氢原子(2°氢原子)、叔氢原子(3°氢原子)。不同类型氢原子的相对反应活性不相同。小结:烷烃分子中的碳原子均为sp3杂化,各原子之间都以单键相连。烷烃分子中的键角接近109°28,CH键和CC键的键长分别为110pm和154pm或与此相近。由于键电子云沿键轴呈圆柱形对称分布,两个成键原子可绕键轴“自由”旋转。问题2-1 写出只有伯氢原子,分子式为C8H18 烷烃的结构式 问题2-2 写出分子式为C9H20,含有8个2°氢原子和12个1°氢原子的烷烃结构式二烷烃的构造异构和命名 (一)烷烃的碳链异构 分子式相同,碳原子连接方式不同而产生的同分异构现象,称为碳链异构,其异构体称为碳链异构体,它是构造异构的一种。甲烷、乙烷和丙烷分子中的碳原子,只有一种连接方式,所以无碳链异构体。 丁烷(C4H10)有两种不同的异构体;戊烷(C5H12)有三种异构体。随着烷烃分子中碳原子数的增多,同分异构体的数目也随之增加。如:己烷C6H14有5个异构体,庚烷C7H16有9个异构体,十二烷C12H26 有355个异构体。(二)烷烃的命名烷烃的命名原则是各类有机化合物命名的基础。烷烃的命名采用两种命名法:普通命名法、系统命名法。1、普通命名法110个碳原子的直链烷烃,分别用词头甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示碳原子的个数,词尾加上“烷”。如CH4 (甲烷)、C2H6 (乙烷)、C3H8(丙烷)、C10H22(癸烷)。10个碳原子以上的烷烃用中文数字命名。如C11H24 (十一烷)、C12H26(十二烷)、 C20H42(二十烷)。烷烃的英文名称是在meth-,eth-,prop-,but- 等表示碳原子数的词头后,加上词尾-ane。部分烷烃的英文名称烷烃英文名称结构式甲烷methaneCH4乙烷ethaneCH3CH3丙烷propaneCH3CH2CH3丁烷butaneCH3(CH2)2CH3戊烷pentaneCH3(CH2)3CH3己烷hexaneCH3(CH2)4CH3庚烷heptaneCH3(CH2)5CH3辛烷octaneCH3(CH2)6CH3壬烷nonaneCH3(CH2)7CH3癸烷decaneCH3(CH2)8CH3烷烃异构体可用词头“正(normal或n-)、异(iso或i-)、新(neo)”来区分。“正”表示直链烷烃,常常可以省略。“异”表示末端为,此外别无支链的烷烃。“新”表示末端为,此外别无支链的烷烃。普通命名法只适用于一些直链或含碳原子数较少的烷烃异构体的命名。对于结构比较复杂的烷烃,就必须采用系统命名法。2、系统命名法(IUPAC命名法)1892年,日内瓦国际化学会议首次拟定了有机化合物系统命名原则,此后经IUPAC(International Union ofPureand AplliedChemisty)多次修订,所以也称为IUPAC 命名法。我国根据这个命名原则,结合汉字特点,制定出我国的有机化合物系统命名法,即有机化合物命名规则。烷烃系统命名法是将带有侧链的烷烃看作是直链烷烃的烷基取代衍生物,所以在学习系统命名法之前先学习取代基的命名。烃分子中去掉一个氢原子,所剩下的基团,称为烃基;脂肪烃基用R表示;烷基的通式为CnH2n+1。烷基的中文命名是把相应的烷烃命名中的“烷”字改为“基”字。其英文命名是将烷烃词尾的-ane改为-y1,常见的烷基结构和名称如下:此外,两价的烷基称为亚基,三价的烷基称为次基。烷烃系统命名法规则.选主链:选择含有取代基最多的、连续的最长碳链为主链,根据主链所含碳原子数命名为“某烷”。.编号:主链上若有取代基,则从靠近取代基的一端开始,给主链上的碳原子编号。当两个相同取代基位于相同位次时,应使第三个取代基的位次最小,依次类推;当两个不同取代基位于相同位次时,应使小的取代基编号较小。.命名:主链连有相同的取代基时,合并取代基,并在取代基名称前,用二(di)、三(tri)、四(tetra)数字表明取代基的个数。并在最前面标明取代基的编号,各编号间用“,”隔开。主链上若连有不同的取代基,应按“次序规则”将取代基先后列出,较优基团应后列出。主要烷基的优先顺序是:异丙基>丙基>乙基>甲基;在英文命名中,取代基是按字首的字母排列顺序先后列出。3、烷烃系统命名法与普通命名法的区别 问题2-3 按IUPAC命名法,写出化合物的中、英文名称。并以此总结出系统命名法的命名规则。问题2-4 写出5-甲基-3,3-二乙基-6-异丙基壬烷的结构式,并指出各碳原子的类型。小结:烷烃的命名是其他有机化合物命名的基础,有机化合物即可以用普通命名法命名、也可以用系统命名法命名,只是适用的范围不同,普通命名法只适用于部分较简单的化合物,系统命名法适用于绝大部分的有机化合物,另外有些化合物还具有俗名。三烷烃的构象异构 烷烃分子中CC键旋转或扭曲时,两个碳原子上的氢原子在空间上的相对位置发生改变,其中每一种排列方式称为一种构象,不同构象之间互称为构象异构体。由于CC键可以旋转任意角度,所以烷烃有无数构象异构体。构象异构体(conformational isomer)的分子构造相同,但其空间排列不同,它是立体异构体的一种。(一) 乙烷的构象(conformation)乙烷没有碳链异构,但乙烷分子中的两个碳原子可以围绕 CC键旋转,乙烷有无数构象异构体,其中有两种典型的构象:重叠式(eclipsed)和交叉式(staggered)。重叠式 交叉式图23 乙烷的两种典型的构象有机化合物的构象常用两种三维式表示,即锯架式(sawhorse formula)和Newman投影式(Newman projection formula )。锯架式是从分子的侧面观察分子,较直观地反映了碳原子和氢原子在空间的排列情况。Newman投影式是沿着CC键轴观察分子,从圆心伸出的三条线,表示离观察者近的碳原子上的价键,而从圆周向外伸出的三条线,表示离观察者远的碳原子上的价键。图24 乙烷球棍模型CC键的旋转(动画)重叠式两个碳原子上的氢原子相距最近,相互间的排斥力最大,分子的能量最高,是最不稳定的构象;交叉式两个碳原子上的氢原子相距最远,相互间斥力最小,分子的能量最低,是最稳定的构象。见下图:图25 乙烷构象能量图交叉式构象的能量比重叠式构象低12.6kJ·mol-1,交叉式是乙烷稳定的优势构象。室温下,分子间的碰撞可产生83.8kJ·mol-1的能量,足以使CC 键“自由”旋转,各构象间迅速转换,无法分离出其中某一构象异构体,但大多数乙烷分子是以最稳定的交叉式构象存在。(二)正丁烷的构象正丁烷分子在围绕C2C3键旋转时,有4种典型的构象异构体,即对位交叉式、邻位交叉式、部分重叠式和全重叠式。见下图:图26 正丁烷绕C2C3键旋转的构象对位交叉式:两个体积较大的甲基处于对位,相距最远,此种构象的能量最低。 邻位交叉式:两个甲基处于邻位,靠得比对位交叉式近,两个甲基之间的Van der Waals斥力(或空间斥力)使这种构象的能量较对位交叉式高,因而较不稳定。 全重叠式:两个甲基及氢原子都各处于重叠位置,相互间斥力最大,分子的能量最高,是最不稳定的构象。部分重叠式:甲基和氢原子的重叠使其能量较高,但比全重叠式的能量低。正丁烷C2C3 s键旋转能量图如下:图27 正丁烷C2C3 键旋转时的能量曲线图从正丁烷C2C3 键旋转时的能量曲线图可见,4种构象的稳定性次序是:正丁烷各种构象之间的能量差别不太大。在室温下分子碰撞的能量足可引起各构象间的迅速转化,因此正丁烷实际上是各构象异构体的混合物,主要是以对位交叉式和邻位交叉式的构象存在,前者约占63%,后者约占37%,其他两种构象所占的比例很小。随着正烷烃碳原子数的增加,它们的构象也随之而复杂,但其优势构象都类似正丁烷,是能量最低的对位交叉式。因此,直链烷烃碳链在空间的排列,绝大多数是锯齿形,而不是直链,只是为了书写方便,才将其结构式写成直链。图28 正己烷分子的球棍模型分子的构象,不仅影响化合物的物理和化学性质,而且影响蛋白质、酶、核酸等生物大分子的结构与功能以及药物的构效关系。许多药物分子的构象异构与其生物活性的发挥密切相关。药物受体一般只与药物多种构象中的一种结合,这种构象称为药效构象。不具有药效构象的药物很难与药物的受体结合,此种药物生物活性很低或根本无活性。例如,抗震颤麻痹药物多巴胺作用于受体的药效构象是对位交叉式。问题2-5多巴胺的结构式为,画出其对位交叉式的药效构象(考虑围绕C1C2键的旋转)。问题2-6 画出己烷围绕C3C4化学键旋转时的最稳定构象和最不稳定的构象。小结:烷烃的CCs键可以绕键轴旋转,烷烃具有无数个构象异构体;室温下,各构象异构体不能分离;烷烃是各构象异构体的混合物,其中较稳定构象异构体的比例较高。四烷烃的物理性质有机化合物的物理性质,一般是指物态、沸点、熔点、密度、溶解度、折光率、旋光度和光谱性质等。烷烃同系物的物理性质常随碳原子数的增加,而呈现规律性的变化。在室温和常压下,C1C4的正烷烃(甲烷至丁烷)是气体,C5C17 的正烷烃(戊烷至十七烷)是液体,C18和更高级的正烷烃是固体。烷烃分子间的作用力只有范德华力,是非极性或弱极性的化合物。根据“极性相似者相溶”的经验规律,烷烃易溶于非极性或极性较小的苯、氯仿、四氯化碳、乙醚等有机溶剂,而难溶于水和其他强极性溶剂。液态烷烃作为溶剂时,可溶解弱极性化合物。烷烃的沸点、熔点、密度的变化规律见下图 沸点密度熔点图29 烷烃沸点、熔点、密度随碳数变化规律(鼠标移至图上有答案出现)沸点:正烷烃的沸点随着碳原子的增多而有规律的升高。一般每增加1个碳原子,沸点升高2030。同分异构体,取代基越多,沸点越低。这是由于烷烃的碳原子数越多,分子间作用力越大;取代基越多,分子间有效接触的程度越低,使分子间的作用力变弱。熔点:正烷烃的熔点随着碳原子数的增多而升高,含偶数碳原子正烷烃的熔点高于相邻的两个含奇数碳原子正烷烃的熔点。在烷烃异构体中,对称性较好的烷烃比直链烷烃的熔点高,这是由于对称性较好的烷烃分子,晶格排列较紧密,致使链间的作用力增大而熔点升高。密度:正烷烃的密度随着碳原子数的增多而增大,但在0.8g·cm-3左右时趋于稳定。所有烷烃的密度都小于1g·cm-3 ,烷烃是所有有机化合物中密度最小的一类化合物。五烷烃的化学性质烷烃是饱和烃,分子中只有牢固的CC 键 和CH 键,所以烷烃具有高度的化学稳定性。在室温下,烷烃与强酸(如硫酸、盐酸)、强碱(如氢氧化钠)、强氧化剂(如重铬酸钾、高锰酸钾)、强还原剂(如锌加盐酸、金属钠加乙醇)都不发生反应。但在适宜的反应条件下,如光照、高温或在催化剂的作用下,烷烃也能发生共价键均裂的自由基( free radical )反应。例如:烷烃的卤代反应1 甲烷的卤代在紫外光照射或高温250400 的条件下,甲烷和氯气混合可剧烈地发生氯代反应,得到一氯甲烷、二氯甲烷、三氯甲烷(氯仿)、四氯甲烷(四氯化碳)和氯化氢的混合物。甲烷与氯气作用,产生一氯甲烷;随着反应的进行,过量的氯气继续与一氯甲烷作用,生成二氯甲烷;二氯甲烷进一步与氯气作用,生成三氯甲烷;三氯甲烷继续反应生成四氯甲烷,所以反应的产物是4种氯代甲烷的混合物。若用超过量的甲烷与氯气反应,反应就几乎限止在一氯代反应阶段,生成一氯甲烷。可用此方法制备一卤代烃。卤素与甲烷的反应活性顺序为:F2>Cl2>Br2>I2。氟代反应十分剧烈,难以控制,强烈的放热反应所产生的热量可破坏大多数的化学键,以致发生爆炸。碘最不活泼,碘代反应难以进行。因此,卤代反应一般是指氯代反应和溴代反应。2.卤代反应的反应机制(reaction mechanism)(1) 自由基的链反应自由基的链反应可分为链引发、链增长和链终止3个阶段。链引发(chain-initiating step):形成自由基氯分子从光或热中获得能量,ClCl键均裂,生成高能量的氯自由基Cl· 。自由基的反应活性很高,一旦形成就有获取一个电子的倾向,以形成稳定的八偶体结构。 链增长(chain-propagating step):延续自由基、形成产物氯自由基使甲烷分子中的CH键均裂,并与氢原子生成氯化氢分子和新的甲基自由基CH3· 。活泼的甲基自由基使氯分子的ClCl键均裂,生成一氯甲烷。此反应是放热反应,所放出的能量足以补偿反应所需吸收的能量,因而可以不断地进行反应,将甲烷转变为一氯甲烷。当一氯甲烷达到一定浓度时,氯原子除了与甲烷作用外,也可与一氯甲烷作用生成·CH2Cl自由基,它再与氯分子作用生成二氯甲烷CH2Cl2和新的Cl· 。反应就这样继续下去,直至生成三氯甲烷和四氯甲烷。甲烷的氯代反应,每一步都消耗一个活泼的自由基,同时又为下一步反应产生另一个活泼的自由基,这是自由基的链增长反应。链终止(chain-terminating step):清除自由基两个活泼的自由基相互结合,生成稳定的分子或加入少量能抑制自由基生成或降低自由基活性的抑制剂,使反应速率减慢或终止反应。甲烷氯代反应的机制不仅适用于甲烷的溴代反应,而且也适用于其他烷烃的卤代反应,甚至还适用于分子中含有类似烷烃结构的许多非烷烃化合物。问题27用图示的方式说明活化能、过渡态的概念,并说明甲烷氯代反应是吸热反应还是放热反应? 答案 :活化能 :反应发生所必须的最低限度的能量,用Ea 表示,它是从反应物转化为产物过程中,必须达到的一个能量高峰。过渡态:反应物生成产物过程中中间状态的结构。此反应为放热反应。(2)烷烃卤代反应的取向 碳链较长的烷烃氯代时,可生成各种异构体的混合物。例如:丙烷分子中有6个1°氢原子和2个2°氢原子,理论上两种氢原子被卤代的几率之比为3:1,但在室温条件下,这两种产物得率之比为43:57 ,说明2°氢原子比1°氢原子的反应活性高。2°氢原子与1°氢原子的相对反应活性为:大量氯代反应的实验结果表明:室温下3°、2°、1°氢原子的相对活性之比为5:4:1,并与烷烃的结构基本无关。根据各级氢的相对活性,可预测烷烃各氯代产物异构体的收率。问题2-8 预测2,3-二甲基丁烷在室温下进行氯代反应时,所得各种一氯代产物的得率之比。烷烃的溴代反应生成相应的溴代物。例如:实验结果表明,卤代反应所用的卤素不同或反应条件不同,各种异构体产物的相对数量有着显著的差异。氯代反应产物中,各种异构体间的比例相差不大;而溴代反应中,各异构体比例相差较大, 溴代反应3°、2°、1°氢原子的相对反应活性比为 1600:82:1。这是因为溴原子比氯原子的反应活性低,烷烃的溴代比氯代活化能高,溴代反应过渡态RHBr的结构较接近产物自由基。能稳定自由基的因素在过渡态中影响较大, 因此3°、 2°、1°氢的活性差别较大,反应的选择性强。相反,氯代过渡态RHCl 的结构较接近反应物,能稳定自由基的因素在过渡态中影响较小,所以3°、2°、1° 氢的活性差别较小。图210丙烷1o、2o氢氯代能量图氯与1°氢和2°氢反应的活化能只相差4.2kJ·mol-1 ,而溴与1°氢和2°氢反应的活化能相差12.6kJ·mol-1 。溴代反应时,两种氢原子的反应活性差别比氯代时大得多,因而溴代反应的选择性高于氯代反应。(3)烷基自由基的构型与稳定性烷基自由基的构型烷基自由基是烷烃去掉一个氢,剩下的带有一个单电子的基团。甲基自由基是最简单的有机烷基自由基。波谱研究证实其结构如下: 碳原子为sp2杂化,3个sp2杂化轨道与3个氢原子的S轨道所形成的3条C-Hs键处于同一平面内,未成对的单电子位于未参与杂化的、垂直于杂化平面的p轨道中。自由基的稳定性通过比较不同类型的氢原子与各基团之间的键离解能数据可知:形成自由基所需要的能量顺序为CH3·>1°>2°>3°, 形成自由基所需的能量越低,自由基就越容易形成,也越稳定。所以自由基相对稳定性的次序为: 烷烃卤代取向的解释在丙烷的氯代反应中,当氯原子进攻丙烷分子中的1°H时,生成1°自由基CH3CH2CH3· ,而进攻2°H时,则生成2°自由基。由于(CH3)2CH· 比CH3CH2CH3· 稳定,内能较低,生成的速度较快。因此在反应中2°H 比1°H 的活性高,同理3oH比2oH的活性高。用此也可以解释烷烃溴代的反应取向。小结:烷烃分子中只有键,化学性质很稳定,常用作溶剂及化妆品、眼药膏的基质,但在特殊条件(光照或高温)下,也可发生自由基的取代反应。含有不同种氢的烷烃的卤代,生成多种卤代烃异构体的混合物,各异构体的比例取决于烷烃分子中各种氢的数目以及反应条件,不同种氢的反应活性顺序为3o氢>2o氢>1o氢。自由基的构型为sp2杂化的平面构型。 第二节环烷烃(Cycloalkane)一环烷烃的分类和命名(一)环烷烃(cycloalkane)的分类根据环烷烃分子中所含的碳环数目,可分为单环、双环和多环环烷烃。单环烷烃的通式为CnH2n 。根据成环的碳原子数目,单环环烷烃又可分为小环(三元环、四元环烷烃)、常见环(五元环、六元环烷烃)、中环(七元环十二元环)及大环(十二元环以上的环烷烃)环烷烃 。(二)环烷烃的命名1、单环环烷烃的命名单环环烷烃的命名与烷烃相似,只是在同数碳原子的链状烷烃的名称前加“环”字。英文命名则加词头“cyclo ” 。环碳原子的编号,应使环上取代基的位次最小。例如: 当环上有复杂取代基时,可将环作为取代基命名。例如:2、螺环烃的命名螺环烃(spiro hydrocarbon):两个碳环共用一个碳原子的脂环烃,分子中共用的碳原子称为螺原子。双环螺环烷烃的命名是在成环碳原子总数的烷烃名称前加上“螺”字。螺环的编号是从螺原子的邻位碳开始,由小环经螺原子至大环,并使环上取代基的位次最小。将连接在螺原子上的两个环的碳原子数,按由少到多的次序写在方括号中,数字之间用圆点隔开,标在“螺”字与烷烃名称之间。例如:3、桥环烃的命名 桥环烃(bridged hydrocarbon):两个碳环共用两个或多个碳原子的化合物。环与环间相互连接的两个碳原子,称为“桥头”碳原子;连接在桥头碳原子