2024变式教学在高中数学中的应用.doc
2024变式教学在高中数学中的应用 随着高中新课改在全国范围内的全面实施,几乎所有数学教师都有这样的感受,那就是“时间紧,教学内容多”。然而,部分教师为了争取时间便满堂灌,致使学生的掌握情况非常不好。面对这样的情形,变式教学在数学课堂中的应用就显得尤为重要。变式教学是运用不同的知识和方法,对有关数学概念、定理、习题等进行不同角度、不同层次、不同背景的变化,有意识的引导学生从“变”的现象中发现“不变”的本质,从“不变”中探求规律。变式教学最终是为了通过变化让学生掌握变化中的不变,能从不同方面、不同角度和不同情况来说明某一事物,从而概括出事物的一般属性。因此,适当的变式能够使学生确切地掌握数学基础知识。另外,数学题目是永远做不完的,如果善于变式,在变式中掌握一类问题的解法,则会以少胜多,大大提高教学效率。变式教学不仅是指问题的变式,而是泛指知识形成过程中的问题设计;基本概念辨析型变式;定理、公式的深化变式,多证变式及变式应用;例题、习题的一题多解、一法多用、一题多变、多题归一等。在我看来,高中数学教学中应用变式教学的主要意义在于:一、利用变式教学创设教学情境,激发学生学习积极性。高中数学的大部分概念比较抽象,教师在教学中如果直接抛出概念,学生很难接受。而如果根据概念类型,设计一系列变式,将概念还原到客观实际(如实例、模型或已有经验、题组等)提出问题,为学生创设生动形象的教学情境,就可以大大激发学生学习数学的热情和积极性。例如:在进行指数函数概念教学时,可以这样进行变式教学:(1)提出问题:我有一张白纸,把它撕成两半,将它们重叠后再撕一次,重叠后再撕一次那么撕扯3次后把所有的纸重叠放置有多少层?5次呢?15次呢?(2)若一张纸厚01毫米,那么撕纸15次后把所有的纸重叠放置有多高?有一人高吗?若撕掉20次呢? (3)你能建立起“纸的张数y与撕纸的次数x”之间的函数关系式吗?生活中就存在这样一类函数(如),从而给出指数函数的概念。通过这样一组由特殊到一般的变式题,可以帮助学生建立感性经验和抽象概念之间的联系,激发学生的思维,引导学生积极探索。二、利用变式教学预设“陷阱”,培养学生思维的严谨性。在学习概念、定理及公式的教学过程中,通过对有关数学概念、定理、公式等进行不同角度、不同层次、不同背景的变化,有意识的引导学生发现变化中的不变,明确并凸显出概念、定理及公式的条件、结论和适用范围、注意事项等关键之处,让学生深入理解概念、定理及公式的本质,从而培养学生严密的逻辑推理能力。例如:在引入奇偶函数定义之后,为了让学生透彻理解该定义,掌握定义的内涵和外延,特别是搞清楚“定义域关于原点对称”等有关问题,可利用辨析型变式设计下列变式题组织学生讨论。判断下列函数的奇偶性,并说明理由:(1)(2)学生易错为第(2)组: 为偶函数为非奇非偶函数事实上,要先考虑函数的定义域,根据函数的定义域将函数进行化简后再判断函数的奇偶性。正确解法为:由得 (定义域不关于原点对称) 为非奇非偶函数由得此时,为奇函数这组变式题,通过引发学生头脑中固有思维模式的冲突,使学生加深了对“定义域关于原点对称”的必要性的理解。教学中,设置反例、错例辨析的变式训练,通过对问题正面、侧面、反面的分析,使学生发现问题的症结所在,达到去伪存真、由此及彼的目的。三、 利用变式教学深化基础知识,拓展学生的数学思维。著名的教学教育家波利亚曾形象地指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找找,很可能附近就有好几个。” 数学教学中,通过对一个基本问题的变式,引导学生运用类比、联想、特殊化和一般化的思维方法,探索问题的发展变化,使其在更深入、更透彻地理解问题的本质的同时拓展了数学思维。例如:在进行增、减函数的概念教学时,为了让学生熟练掌握增、减函数的定义,需要进行概念深化变式。也就是探求概念的等价形式或变式含义,并探讨等价形式及变式含义的应用,达到透彻理解概念、灵活应用概念的目的。因此要学生注意增、减函数定义的如下两种等价形式:设,(1) 在上是增函数在上是减函数(2)在上是增函数 在上是减函数在形成概念后,不应急于应用概念去解决问题,而应对概念作进一步的探讨,通过辨析型变式和等价深化变式,使学生对概念有更加深刻的理解,让学生既知其然,又知其所以然。数学变式教学以一胜多、举一反三的变式训练,给数学教学注入了生机和活力,提高了学生的兴趣,调动了学生的积极性,使其学得轻松,并且避免“题海”,从而提高了课堂教学效率和教学质量,对学生掌握知识、促进思维和培养能力等方面起着非常重要的作用。然而,变式教学不能变成教师整节课的精彩演绎和拓展,决不能一时兴起就刹不住车,教师讲得神采飞扬,酣畅淋漓,学生听得头昏脑胀,应对不暇。教师必需注意学生的感觉,控制变式的节奏、变式的维度及变式的深度。“变”与“不变”,都要让学生去体验。教师的作用应该主要是引导和点拨,使学生去思考和比较,发现变式问题中的“变”与“不变”。抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期。分段函数的周期:设是周期函数,在任意一个周期内的图像为C:。把个单位即按向量在其他周期的图像:。2、奇偶函数:设若若。分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:点 (2)轴对称:对称轴方程为:。关于直线函数关于直线成轴对称。关于直线成轴对称。二、函数对称性的几个重要结论(一)函数图象本身的对称性(自身对称)若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。1、 图象关于直线对称推论1: 的图象关于直线对称推论2、 的图象关于直线对称推论3、 的图象关于直线对称2、 的图象关于点对称推论1、 的图象关于点对称推论2、 的图象关于点对称推论3、 的图象关于点对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数与图象关于Y轴对称2、奇函数与图象关于原点对称函数3、函数与图象关于X轴对称4、互为反函数与函数图象关于直线对称5.函数与图象关于直线对称 推论1:函数与图象关于直线对称推论2:函数与 图象关于直线对称推论3:函数与图象关于直线对称 (三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数yf(x)关于直线xa轴对称,则以下三个式子成立且等价:(1)f(ax)f(ax) (2)f(2ax)f(x) (3)f(2ax)f(x)性质2 若函数yf(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(ax)f(ax)(2)f(2ax)f(x)(3)f(2ax)f(x)易知,yf(x)为偶(或奇)函数分别为性质1(或2)当a0时的特例。2、复合函数的奇偶性定义1、 若对于定义域内的任一变量x,均有fg(x)fg(x),则复数函数yfg(x)为偶函数。定义2、 若对于定义域内的任一变量x,均有fg(x)fg(x),则复合函数yfg(x)为奇函数。说明:(1)复数函数fg(x)为偶函数,则fg(x)fg(x)而不是fg(x)fg(x),复合函数yfg(x)为奇函数,则fg(x)fg(x)而不是fg(x)fg(x)。(2)两个特例:yf(xa)为偶函数,则f(xa)f(xa);yf(xa)为奇函数,则f(xa)f(ax)(3)yf(xa)为偶(或奇)函数,等价于单层函数yf(x)关于直线xa轴对称(或关于点(a,0)中心对称)3、复合函数的对称性性质3复合函数yf(ax)与yf(bx)关于直线x(ba)/2轴对称性质4、复合函数yf(ax)与yf(bx)关于点(ba)/2,0)中心对称推论1、 复合函数yf(ax)与yf(ax)关于y轴轴对称推论2、 复合函数yf(ax)与yf(ax)关于原点中心对称4、函数的周期性若a是非零常数,若对于函数yf(x)定义域内的任一变量x点有下列条件之一成立,则函数yf(x)是周期函数,且2|a|是它的一个周期。f(xa)f(xa) f(xa)f(x)f(xa)1/f(x) f(xa)1/f(x)5、函数的对称性与周期性性质5 若函数yf(x)同时关于直线xa与xb轴对称,则函数f(x)必为周期函数,且T2|ab|性质6、若函数yf(x)同时关于点(a,0)与点(b,0)中心对称,则函数f(x)必为周期函数,且T2|ab|性质7、若函数yf(x)既关于点(a,0)中心对称,又关于直线xb轴对称,则函数f(x)必为周期函数,且T4|ab| 6、函数对称性的应用 (1)若,即 (2)例题 1、; 2、奇函数的图像关于原点(0,0)对称:。 3、若的图像关于直线对称。设.(四)常用函数的对称性三、函数周期性的几个重要结论1、( ) 的周期为,()也是函数的周期2、 的周期为3、 的周期为4、 的周期为5、 的周期为6、 的周期为7、 的周期为8、 的周期为9、 的周期为10、若11、有两条对称轴和 周期推论:偶函数满足 周期12、有两个对称中心和 周期推论:奇函数满足 周期13、有一条对称轴和一个对称中心的三角函数 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin (kZ) cos(2k)cos (kZ) tan(2k)tan (kZ) cot(2k)cot (kZ) 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)costan(2)tan cot(2)cot 公式六: /2±及3/2±与的三角函数值之间的关系: sin(/2)cos cos(/2)sintan(/2)cot cot(/2)tansin(/2)cos cos(/2)sintan(/2)cot cot(/2)tansin(3/2)cos cos(3/2)sintan(3/2)cot cot(3/2)tansin(3/2)cos cos(3/2)sintan(3/2)cot cot(3/2)tan (以上kZ) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为:对于/2*k ±(kZ)的三角函数值, 当k是偶数时,得到的同名函数值,即函数名不改变; 当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan. (奇变偶不变) 然后在前面加上把看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2)sin(4·/2),k4为偶数,所以取sin。 当是锐角时,2(270°,360°),sin(2)0,符号为“”。 所以sin(2)sin 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把视为锐角时,角k·360°+(kZ),-、180°±,360°- 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)” 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“”; 第二象限内只有正弦是“”,其余全部是“”; 第三象限内切函数是“”,弦函数是“”;第四象限内只有余弦是“”,其余全部是“” 上述记忆口诀,一全正,二正弦,三内切,四余弦 同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tan·cot1 sin·csc1 cos·sec1 商的关系: sin/costansec/csc cos/sincotcsc/sec 平方关系: sin2()cos2()1 1tan2()sec2() 1cot2()csc2() 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 两角和与差的三角函数公式 sin()sincoscossin sin()sincoscossin cos()coscossinsin cos()coscossinsin tan()(tan+tan)(1-tantan) tan()(tantan)(1tan·tan) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin22sincos cos2cos2()sin2()2cos2()112sin2() tan22tan/1tan2() 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin2(/2)(1cos)2 cos2(/2)(1cos)2 tan2(/2)(1cos)(1cos) 另也有tan(/2)=(1cos)/sin=sin/(1+cos) 万能公式 sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) 万能公式推导 附推导: sin2=2sincos=2sincos/(cos2()+sin2()*, (因为cos2()+sin2()=1) 再把*分式上下同除cos2(),可得sin22tan/(1tan2() 然后用/2代替即可。