【数学】平面向量的应用能力提升试卷1 2023~2024学年高一下学期数学人教A版(2019)必修第二册.docx
-
资源ID:97192540
资源大小:627.03KB
全文页数:8页
- 资源格式: DOCX
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【数学】平面向量的应用能力提升试卷1 2023~2024学年高一下学期数学人教A版(2019)必修第二册.docx
平面向量 成都市高一下期数学(人教A版2019必修第二册)第六章 平面向量的应用能力提升试卷1本套试题题型为8+3+3+5模式考试时间:120分钟 满分:150分 考试范围:平面向量的应用,解三角形一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在中,若,则( )ABCD2.在ABC中,cos C=,AC=4,BC=3,则tan B=( )AB2C4D83(2023·北京·高考真题)在中,则( )ABCD4.的内角的对边分别为,若的面积为,则( )ABCD5.在中,内角所对的边分别是,则该三角形的形状是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形6(23-24高一下·山东·阶段练习)如图所示,为测量一树的高度,在地面上选取两点,从两点测得树尖的仰角分别为和,且两点之间的距离为,则树的高度为( )ABCD7.在中,内角,的对边分别是,若,且 ,则等于( )A3BC3或D-3或8(23-24高三上·重庆沙坪坝·阶段练习)冬奥会会徽以汉字“冬”(如图1甲)为灵感来源,结合中国书法的艺术形态,将悠久的中国传统文化底蕴与国际化风格融为一体,呈现出中国在新时代的新形象新梦想.某同学查阅资料得知,书法中的一些特殊画笔都有固定的角度,比如弯折位置通常采用30°,45°,60°,90°,120°,150°等特殊角度.为了判断“冬”的弯折角度是否符合书法中的美学要求.该同学取端点绘制了ABD(如图乙),测得,若点C恰好在边BD上,请帮忙计算sinACD的值( ) ABCD二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,少选漏选的得3分,有选错的得0分.9.在中,a,b,c分别为的对边,下列叙述正确的是( )A若,则有两解B若,则为等腰三角形C若,则一定为直角三角形;D若,则为锐角三角形10.在中,a,b,c分别为,的对边,下列叙述正确的是( )A若是锐角三角形,则B在中,C若,则为直角三角形D若,则11.中国南宋时期杰出数学家秦九韶在数书九章中提出了已知三角形三边求面积的公式,求其法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积”若把以上这段文字写成公式,即现有满足,且,则( )A外接圆的半径为B若的平分线与交于,则的长为C若为的中点,则的长为D若为的外心,则三、填空题:本大题共3小题,每小题5分,共15分.12(23-24高一下·广西河池·阶段练习)某货轮在处看灯塔在货轮北偏东,距离为nmile;在处看灯塔在货轮的北偏西,距离为nmile.货轮由处向正北航行到处时,再看灯塔在南偏东,则灯塔与处之间的距离是 nmile.13.在中,角所对的边分别为,的平分线交于点D,且,则的最小值为 14.在中,M是的中点,则 , .四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在中,内角A,B,C所对的边分别为.已知.(1)求的值;(2)若,求的面积.16(15分)在中,角A、B、C的对边分别为a,b,c.已知.(1)求的值;(2)求的值;(3)求的值.17(15分)在中,角、所对的边长分别为、,.(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由18(17分)(2023·全国·高考真题)已知在中,(1)求;(2)设,求边上的高19(17分)在中,为内部(包含边界)的动点,且.(1)求;(2)求的取值范围.1.B 2.C 3.B 4.C 5.C 6.A 7.A 8.C 9. AC 10. ABCD 11.BD11.【详解】根据题意由,利用正弦定理可得,不妨设,利用余弦定理可得,又,可得;又面积为,解得,所以,对于选项A,设外接圆的半径为,由正弦定理可得,所以,即A错误;对于B,分别作垂直于,垂足为,如下图所示: 易知的面积为,可得,即B正确;对于C,若为的中点,易知,如下图所示: 所以可得,可得,即C错误;对于D,延长交外接圆于点,连接;如下图所示: 易知即为直径,所以可知,;利用投影向量的几何意义可得,即得D正确.12 13.9 【详解】角平分线定义三角形面积公式基本不等式由题意可知,,由角平分线定义和三角形面积公式得,化简得,即,因此当且仅当时取等号,则的最小值为.14. 15.解:(1)由,得,所以.(2)由可得,.,由正弦定理知:.又,所以.16.【解】(1)因为,即,而,代入得,解得:(2)由(1)可求出,而,所以,又,所以(3)因为,所以,故,又, 所以,而,所以,故17.【解】(1)因为,则,则,故,所以,为锐角,则,因此,;(2)显然,若为钝角三角形,则为钝角,由余弦定理可得,解得,则,由三角形三边关系可得,可得,故.18【详解】(1),即,又,即,所以,.(2)由(1)知,由,由正弦定理,可得,.19【详解】(1)在中,由余弦定理,即,解得或(舍),所以.所以.(2)以A为原点,所在直线为轴建立平面直角坐标系.设,则点坐标为.由(1)知,所以点坐标为,点坐标为.所以.所以.因为,所以.所以,所以.所以的取值范围是所以.第 8 页 共 8 页学科网(北京)股份有限公司