欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2024年初二下册数学期末考试专项复习中心对称图形--平行四边形全章复习与巩固(基础)知识讲解.doc

    • 资源ID:97238968       资源大小:1.18MB        全文页数:38页
    • 资源格式: DOC        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2024年初二下册数学期末考试专项复习中心对称图形--平行四边形全章复习与巩固(基础)知识讲解.doc

    2024年初二下册数学期末考试专项复习中心对称图形平行四边形全章复习与巩固(基础)【学习目标】1. 掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角.2. 理解中心对称图形的定义和性质.3. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.4. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.5. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、旋转的概念和性质将图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.要点二、中心对称与中心对称图形一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.这个点叫做对称中心成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.把一个图形绕某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心要点三、平行四边形1定义:两组对边分别平行的四边形叫做平行四边形.2性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形.3面积:4判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形 角:(4)两组对角分别相等的四边形是平行四边形; (5)两组邻角分别互补的四边形是平行四边形 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点四、矩形1定义:有一个角是直角的平行四边形叫做矩形.2性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等; (4)中心对称图形,轴对称图形.3面积:判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半要点五、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2性质:(1)具有平行四边形的一切性质; (2)四条边相等; (3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角; (4)中心对称图形,轴对称图形.3面积:4判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点六、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2性质:(1)对边平行; (2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3面积:边长×边长×对角线×对角线4判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、旋转与中心对称图形1、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D【答案】A;【解析】解:A、是轴对称图形,是中心对称图形故此选项正确;B、是轴对称图形,不是中心对称图形故此选项错误;C、是轴对称图形,不是中心对称图形故此选项错误;D、是轴对称图形,不是中心对称图形故此选项错误【总结升华】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2、如图,将ABC绕点A逆时针旋转一定角度,得到ADE若CAE=65°,E=70°,且ADBC,BAC的度数为()A60° B75° C85° D90°【思路点拨】根据旋转的性质知,旋转角EAC=BAD=65°,对应角C=E=70°,则在直角ABF中易求B=25°,所以利用ABC的内角和是180°来求BAC的度数即可【答案】C;【解析】解:根据旋转的性质知,EAC=BAD=65°,C=E=70°如图,设ADBC于点F则AFB=90°,在RtABF中,B=90°-BAD=25°,在ABC中,BAC=180°-B-C=180°-25°-70°=85°,即BAC的度数为85°故选C【总结升华】本题考查了旋转的性质解题的过程中,利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数的类型二、平行四边形3、如图,在口ABCD中,点E在AD上,连接BE,DFBE交BC于点F,AF与BE交于点M,CE与DF交于点N求证:四边形MFNE是平行四边形【答案与解析】证明:四边形ABCD是平行四边形.ADBC,ADBC(平行四边形的对边相等且平行)又DFBE(已知)四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)DEBF(平行四边形的对边相等)ADDEBCBF,即AECF又AECF四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)AFCE四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰ABC中,D是BC边上的一点,DEAC,DFAB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论【答案】ABDEDF,提示:DEAC,DFAB,四边形AEDF是平行四边形,CEDBDFAEABC是等腰三角形,BC,BEDB,DEBE,ABAEBEDFDE类型三、矩形4、(2016春常州期末)如图,在ABC中,AB=AC,D为BC的中点,AEBC,DEAB试说明:(1)AE=DC; (2)四边形ADCE为矩形【思路点拨】(1)根据已知条件可以判定四边形ABDE是平行四边形,则其对边相等:AE=BD结合中点的性质得到AE=CD;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论【答案与解析】证明:(1)如图,AEBC,AEBD又DEAB,四边形ABDE是平行四边形,AE=BDD为BC的中点,BD=DC,AE=DC; (2)AECD,AE=BD=DC,即AE=DC,四边形ADCE是平行四边形又AB=AC,D为BC的中点,ADCD,平行四边形ADCE为矩形【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论5、如图所示,在矩形ABCD中,AB6,BC8将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入RtAEF中,由折叠可知CDCF,DEEF,易得AC10,所以AF4,AE8-EF,然后在RtAEF中利用勾股定理求出EF的值 【答案与解析】解:设EF, 由折叠可得:DEEF,CFCD6, 又 在RtADC中, AFACCF4,AEADDE8 在RtAEF中, 即, 解得:3 EF3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解举一反三:【变式】(2015秋抚州校级期中)在平行四边形ABCD中,过点D作DEAB于点E,点F 在边CD上,DF=BE,连接AF,BF(1)求证:四边形BFDE是矩形;(2)若CF=9,BF=12,DF=15,求证:AF平分DAB【答案】证明:(1)四边形ABCD为平行四边形,DCAB,即DFBE,又DF=BE,四边形DEBF为平行四边形,又DEAB,DEB=90°,四边形DEBF为矩形;(2)四边形DEBF为矩形,BFC=90°,CF=9,BF=12,BC=15,AD=BC=15,AD=DF=15,DAF=DFA,ABCD,FAB=DFA,FAB=DFA,AF平分DAB类型四、菱形6、如图,在菱形ABCD中,BAD80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则CDF等于( ).A.80° B.70° C.65° D.60°【答案】D;【解析】解:连结BF,由FE是AB的中垂线,知FBFA,于是FBAFAB40°.CFB40°40°80°,由菱形ABCD知,DCCB,DCFBCF,CFCF,于是DCFBCF,因此CFDCFB80°,在CDF中, CDF180°40°80°60°.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质. 举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由 【答案】四边形ABCD是菱形;证明:由ADBC,ABCD得四边形ABCD是平行四边形,过A,C两点分别作AEBC于E,CFAB于FCFBAEB90° AECF(纸带的宽度相等)ABECBF,RtABERtCBF,ABBC,四边形ABCD是菱形. 类型五、正方形7、(2015春上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求FCG的面积【思路点拨】(1)通过证明RtDHGAEH,得到DHG=AEH,从而得到GHE=90°,然后根据有一个角为直角的菱形为正方形得到四边形EFGH为正方形;(2)作FQCD于Q,连结GE,如图,利用ABCD得到AEG=QGE,再根据菱形的性质得HE=GF,HEGF,则HEG=FGE,所以AEH=QGF,于是可证明AEHQGF,得到AH=QF=2,然后根据三角形面积公式求解【答案与解析】 (1)证明:四边形EFGH为菱形,HG=EH,AH=2,DG=2,DG=AH,在RtDHG和AEH中,RtDHGAEH,DHG=AEH,AEH+AHG=90°,DHG+AHG=90°,GHE=90°,四边形EFGH为菱形,四边形EFGH为正方形;(2)解:作FQCD于Q,连结GE,如图,四边形ABCD为矩形,ABCD,AEG=QGE,即AEH+HEG=QGF+FGE,四边形EFGH为菱形,HE=GF,HEGF,HEG=FGE,AEH=QGF,在AEH和QGF中,AEHQGF,AH=QF=2,DG=6,CD=8,CG=2,FCG的面积=CGFQ=×2×2=2【总结升华】本题考查了正方形的判定与性质:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定;正方形具有平行四边形、矩形、菱形的所有性质也考查了菱形和矩形的性质举一反三:【变式】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为_形 (1)当四边形满足_条件时,四边形EFGH是菱形 (2)当四边形满足_条件时,四边形EFGH是矩形 (3)当四边形满足_条件时,四边形EFGH是正方形 在横线上填上合适的条件,并说明你所填条件的合理性【答案】四边形EFGH为平行四边形;解:(1)ACBD,理由:如图,四边形ABCD的对角线ACBD,此时四边形EFGH为平行四边形,且EHBD,HGAC,得EHGH,故四边形EFGH为菱形(2)ACBD,理由:如图,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形易得GHBD,即GHEH,故四边形EFGH为矩形(3)ACBD且ACBD,理由:如图,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形 本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形【巩固练习】一.选择题1. 如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A72° B108° C144° D216°2下列图形中,既是中心对称图形又是轴对称图形的是()A B C D.3.(2015河北模拟)如图,在ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1若AFC=90°,则BC的长度为()A12 B13 C14 D154. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否相互平分 B测量两组对边是否分别相等C测量一组对角是否都为直角 D测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是( )A. 对角线相等; B. 对角线互相垂直;C. 每条对角线平分一组对角; D. 对角线互相平分.6. 如图所示,口ABCD的周长为16,AC、BD相交于点O,OEAC,交AD于点E,则DCE的周长为( ) A4 B6 C8 D10 7.(2016桂林模拟)如图,在RtABC中,ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DEAC于点E,DFBC于点F,连接EF,则线段EF的最小值是()A5 B4.8 C4.6 D4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE,则菱形ABCD的周长为( )ABCD二.填空题9如图,若口ABCD与口EBCF关于B,C所在直线对称,ABE90°,则F_10矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为_.11如图,菱形ABCD的边长为2,ABC45°,则点D的坐标为_12.如图,ABCD中,AC=AD,BEAC于E.若D=70°,则ABE= °.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _.14(2015秋南沙区校级期中)我们在教材中已经学习了:等边三角形;矩形;平行四边形;等腰三角形;菱形在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 15.菱形ABCD中,AE垂直平分BC,垂足为E,AB那么,菱形ABCD的面积是_,对角线BD的长是_ 16.(2016成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为 三.解答题17.如图,E、F是平行四边形ABCD对角线AC上的两点,BEDF求证:BE=DF18.(2015春无棣县期中)如图,在ABC中,AB=AC,AD是ABC的角平分线,作AEBC,CEAD,AE、CE交于点E(1)证明:四边形ADCE是矩形(2)若DE交AC于点O,证明:ODAB且OD=AB19.如图,在矩形ABCD中,点E在BC上,AE=AD,DFAE于F,连接DE证明:DF=DC20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE AF(1)求证:BE DF;(2)连接AC交EF于点O,延长OC至点M,使OM OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论【答案与解析】一.选择题1.【答案】B;【解析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合2【答案】B;3.【答案】C;【解析】解:如图,AFC=90°,AE=CE,EF=6,DE=1+6=7;D,E分别是AB,AC的中点,DE为ABC的中位线,BC=2DE=14,故选C4.【答案】D;5.【答案】A;6.【答案】C;【解析】因为口ABCD的周长为16 ,ADBC,ABCD,所以ADCD×168()因为O为AC的中点,又因为OEAC于点O,所以AEEC,所以DCE的周长为DCDECEDCDEAEDCAD8().7.【答案】B;【解析】解:如图,连接CDACB=90°,AC=6,BC=8,AB=10,PEAC,PFBC,C=90°,四边形CFDE是矩形,EF=CD,由垂线段最短可得CDAB时,线段EF的值最小,此时,SABC=BCAC=ABCD,即×8×6=×10CD,解得CD=4.8,EF=4.8故选B8.【答案】C;【解析】OE,则AD,菱形周长为4×.二.填空题9【答案】45°;10【答案】24;11【答案】; 【解析】过D作DHOC于H,则CHDH,所以D的坐标为12.【答案】20; 13.【答案】16;【解析】证ABEADF,四边形AECF的面积为正方形ABCD的面积.14【答案】; 【解析】解:等边三角形,是轴对称图形,不是中心对称图形,故选项错误;矩形,既是轴对称图形,又是中心对称图形,故选项正确;平行四边形,不是轴对称图形,是中心对称图形,故选项错误;等腰三角形,是轴对称图形,不是中心对称图形,故选项错误;菱形,既是轴对称图形,又是中心对称图形,故选项正确;故答案为:15.【答案】8 ;【解析】由题意知ABC为等边三角形,AE,面积为8 ,BD2AE . 16.【答案】3.【解析】解:四边形ABCD是矩形,OB=OD,OA=OC,AC=BD,OA=OB,AE垂直平分OB,AB=AO,OA=AB=OB=3,BD=2OB=6,AD=3;故答案为:3三.解答题17.【解析】证明:四边形ABCD是平行四边形,BC=AD,BCAD, ACB=DAC, BEDF,BEC=AFD, CBEADF, BE=DF 18.【解析】证明:(1)AB=AC,AD是ABC的角平分线,ADBC,且BD=CD,AEBC,CEAD,四边形ADCE是平行四边形,四边形ADCE是矩形;(2)四边形ADCE是矩形,OA=OC,OD是ABC的中位线,ODAB且OD=AB19.【解析】ADBEFOCM证明:DFAE于F,DFE=90°在矩形ABCD中,C=90°,DFE=C,在矩形ABCD中,ADBCADE=DEC,AE=AD,ADE=AED,AED=DEC,又DE是公共边,DFEDCE,DF=DC20.【解析】证明:(1)四边形ABCD是正方形,ABAD,BD90°AE AF,BEDF(2)四边形AEMF是菱形四边形ABCD是正方形,BCA DCA45°,BCDCBEDF,BCBEDCDF. 即CECFOEOFOMOA,四边形AEMF是平行四边形AEAF,平行四边形AEMF是菱形中心对称图形平行四边形全章复习与巩固(提高)1. 掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角.2. 理解中心对称图形的定义和性质.3. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.4. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.5. 掌握三角形中位线定理.【知识网络】【要点梳理】要点一、旋转的概念和性质将图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.要点二、中心对称与中心对称图形一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.这个点叫做对称中心成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.把一个图形绕某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心要点三、平行四边形1定义:两组对边分别平行的四边形叫做平行四边形.2性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形.3面积:4判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形 角:(4)两组对角分别相等的四边形是平行四边形; (5)两组邻角分别互补的四边形是平行四边形 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点四、矩形1定义:有一个角是直角的平行四边形叫做矩形.2性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等; (4)中心对称图形,轴对称图形.3面积:判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半要点五、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2性质:(1)具有平行四边形的一切性质; (2)四条边相等; (3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角; (4)中心对称图形,轴对称图形.3面积:4判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点六、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2性质:(1)对边平行; (2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3面积:边长×边长×对角线×对角线4判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、旋转与中心对称图形1、如图,在ABC中,CAB=75°,在同一平面内,将ABC绕点A旋转到ABC的位置,使得CCAB,则BAB=()A30° B35° C40° D50°【思路点拨】根据旋转的性质可得AC=AC,BAC=BAC,再根据两直线平行,内错角相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【答案】A;【解析】解:ABC绕点A旋转到ABC的位置,AC=AC,BAC=BAC,CCAB,CAB=75°,ACC=CAB=75°,CAC=180°-2ACC=180°-2×75°=30°,BAB=BAC-BAC,CAC=BAC-BAC,BAB=CAC=30°故选A【总结升华】本题考查了旋转的性质,主要利用了旋转变换只改变图形的位置不改变图形的形状与大小的性质,等腰三角形两底角相等的性质,平行线的性质类型二、平行四边形2、(2016菏泽)如图,点O是ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,OBC和OCB互余,求DG的长度【思路点拨】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EFBC且EF=BC,DGBC且DG=BC,从而得到DE=EF,DGEF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可【答案与解析】解:(1)D、G分别是AB、AC的中点,DGBC,DG=BC,E、F分别是OB、OC的中点,EFBC,EF=BC,DG=EF,DGEF,四边形DEFG是平行四边形;(2)OBC和OCB互余,OBC+OCB=90°,BOC=90°,M为EF的中点,OM=3,EF=2OM=6由(1)有四边形DEFG是平行四边形,DG=EF=6【总结升华】此题主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形举一反三:【变式】已知ABC中,AB3,AC4,BC5,分别以AB、AC、BC为一边在BC边同侧作正ABD、正ACE和正BCF,求以A、E、F、D四点为顶点围成的四边形的面积【答案】证明: AB3,AC4,BC5,BAC90°ABD、ACE和BCF为正三角形, ABBDAD,ACAECE,BCBFFC , 1FBA2FBA60°12易证BACBDF(SAS),DFACAE4,BDF90°同理可证BACFECABADEF3四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形) DFAE,DFBD 延长EA交BD于H点,AHBD,则H为BD中点 平行四边形AEFD的面积DF×DH4×6.类型三、矩形3、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AEBFCGDH(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DGAC,OF2,求矩形ABCD的面积【答案与解析】(1)证明:四边形ABCD是矩形,OA0BOCOD,AEBFCGDH,AOAEOBBFCOCGDODH,即:OEOFOGOH,四边形EFGH是矩形;(2)解:G是OC的中点,GOGC,DGAC,DGODGC90°,又DGDG,DGCDGO,CDOD,F是BO中点,OF2,BO4,四边形ABCD是矩形,DOBO4,DC4,DB8,CB,矩形ABCD的面积4×【总结升华】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等举一反三:【变式】(2015秋太康县期中)如图,M是ABC的边BC的中点,AN平分BAC,且BNAN,垂足为N,且AB=6,BC=10,MN=1.5,求ABC的周长【答案】解:延长线段BN交AC于EAN平分BAC,在ABN和AEN中,ABNAEN(SAS),AE=AB=6,BN=NE,又M是ABC的边BC的中点,CE=2MN=2×1.5=3,ABC的周长是AB+BC+AC=6+10+6+3=254、在RtABC中,ACB=90°,BC=4过点A作AEAB且AB=AE,过点E分别作EFAC,EDBC,分别交AC和BC的延长线与点F,D若FC=5,求四边形ABDE的周长【思路点拨】首先证明ABCEAF,即可得出BC=AF,AC=EF,再利用勾股定理得出AB的长,进而得出四边形EFCD是矩形,求出四边形ABDE的周长即可【答案与解析】解:ACB=90°,AEAB,1+B=1+2=90°B=2                  EFAC,4=5=90°3=4在ABC和EAF中,ABCEAF(AAS) BC=AF,AC=EFBC=4,AF=4FC=5,AC=EF=9在RtABC中,AB=.AE=EDBC,7=6=5=90°四边形EFCD是矩形CD=EF=9,ED=FC=5四边形ABDE的周长=AB+BD+DE+EA=+4+9+5+=18+2【总结升华】此题主要考查了全等三角形的判定以及矩形的判定与性质和勾股定理等知识,根据已知得出AC=EF=9是解题关键类型四、菱形5、如图,平行四边形ABCD中,ABAC,AB1,BC对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数【思路点拨】(1)当旋转角为90°时,AOF=90°,由ABAC,可得ABEF,即可证明四边形ABEF为平行四边形;(2)证明AOFCOE即可;(3)当EFBD时,四边形BEDF为菱形,又由ABAC,AB=1,BC=,易求得OA=AB,即可得AOB=45°,求得AOF=45°,则可得此时AC绕点O顺时针旋转的最小度数为45°【答案与解析】(1)证明:当AOF90°时,ABEF,又AFBE,四边形ABEF为平行四边形 (2)证明:四边形ABCD为平行四边形,AOCO,FAOECO,AOFCOE.AOFCO

    注意事项

    本文(2024年初二下册数学期末考试专项复习中心对称图形--平行四边形全章复习与巩固(基础)知识讲解.doc)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开