欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2024年中考数学总复习:实数--巩固练习(提高).doc

    • 资源ID:97239419       资源大小:1.39MB        全文页数:37页
    • 资源格式: DOC        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2024年中考数学总复习:实数--巩固练习(提高).doc

    2024年中考数学总复习:实数巩固练习 (提高)【巩固练习】一、选择题1. 在实数、sin30°,无理数的个数为( )A.1 B.2 C.3 D.42. 对于实数、,给出以下三个判断: 若,则 若,则 若,则 其中正确的判断的个数是( )A3 B2 C1 D03据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A精确到万位B有三个有效数字C这是一个精确数D用科学记数法表示为2.80×1064如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) A2.5 B2 C D 5填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( )02842462246844m6A38 B52 C66 D746. 若a、b两数满足3103,a103b,则之值为( )A B C D二、填空题7(1)先找规律,再填数:(2)对实数a、b,定义运算如下:ab=,例如23=2-3=.计算2(4)×(4)(2)= .8已知:,观察前面的计算过程,寻找计算规律计算 (直接写出计算结果),并比较 (填“”或“”或“=”)9右图为手的示意图,在各个手指间标记字母A,B,C,D请你按图中箭头所指方向(即ABCDCBABC的方式)从A开始数连续的正整数1,2,3,4,当数到12时,对应的字母是 ;当字母C第201次出现时,恰好数到的数是 ;当字母C第2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示)10根据如图所示的程序计算,若输入x的值为1,则输出y的值为_.11已知,当n=1时,a1=0;当n=2时,a2=2;当n=3时,a3=0; 则a1+a2+a3+a4+a5+a6 的值为_12观察图形:请用你发现的规律直接写出图4中y的值 三、解答题13对于任何实数,我们规定符号的意义是:=按照这个规定请你计算:当时, 的值14.小彬在做数学题时,发现下面有趣的结果:32=18+765=415+14+13121110=924+23+22+2120191817=16根据以上规律可知第99行左起第一个数是 15根据以下10个乘积,回答问题:11×29; 12×28; 13×27; 14×26; 15×25;16×24; 17×23; 18×22; 19×21; 20×20.(1)试将以上各乘积分别写成一个“2-2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜想一个一般性的结论.(不要求证明)16.已知等边OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边OA1B1,A1B1与OB相交于点A2.(1)求线段OA2的长;(2)若再以OA2为边按逆时针方向作等边OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到 OA3B3,OA4B4,OAnBn(如图).求OA6B6的周长.【答案与解析】一、选择题1. 【答案】B;【解析】、是无理数.2.【答案】C;【解析】通过举反例说明是不对的,只有是正确的. 3.【答案】C;【解析】A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意故选:C4.【答案】D;【解析】用勾股定理求得OB= 即可. 5.【答案】D;【解析】先分析出阴影方格的数,如图,找出规律:m=左下角方格的数的平方加上右上角方格的数.6.【答案】C;二、填空题7【答案】(1);(2)1;【解析】(1)规律为:(n为正整数).(2) 2(4)×(4)(2)=2-4×(-4)2=1.8【答案】42;.【解析】7×6=42;=9×8×7×6×5,=10×9×8,.9【答案】B;603;6n3; 【解析】字母C第“奇数”次出现时,恰好数到的数是这个“奇数”的3倍。10【答案】4;【解析】第一次结果是-2,继续输入得到结果是4,符合题意.11【答案】6; 【解析】a1=a3=a5=0,a2=a4=a6=2,所以a1+a2+a3+a4+a5+a6=6.12【答案】12 . 【解析】12=5×21×(2),20=8×1(3)×4,13=(7)×45×(3),y=3×06×(2)=12故答案为:12三、解答题13.【答案与解析】14.【答案与解析】解:3=221,8=321,15=421,24=521,第99行左起第一个数是:(99+1)21=9999故答案为:999915.【答案与解析】(1)11×29=202-92;12×28=202-82; 13×27=202-72;14×26=202-62; 15×25=202-52;16×24=202-42; 17×23=202-32;18×22=202-22; 19×21=202-12;20×20=202-02;例如:11×29;假设11×29=2-2; 因为2-2=(+)(-) 所以,可以令-=11,+=29 解得,=20,=9,故11×29=202-92 (或11×29=(20-9)(20+9)=202-92)(2)这10个乘积按照从小到大的顺序依次是: 11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20.(3)若a+b=40,a,b是自然数,则ab202=400. 若a+b=40,则ab202=400. 若a+b=m,a,b是自然数,则 若a+b=m,则 若a1+b1=a2+b2=a3+b3=an+bn=40,且|a1-b1|a2-b2|a3-b3|an-bn|, 则a1b1a2b2a3b3anbn. 若a1+b1=a2+b2=a3+b3=an+bn=m,且|a1-b1|a2-b2|a3-b3|an-bn|, 则a1b1a2b2a3b3anbn.16.【答案与解析】(1)(2)依题意, 以此类推, ,即OA6B6的周长为 中考总复习:实数知识讲解 (基础)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用. 【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:2.按性质符号分类:有理数:整数和分数统称为有理数或者“形如(m,n是整数n0)”的数叫有理数无理数:无限不循环小数叫无理数实数:有理数和无理数统称为实数要点诠释:常见的无理数有以下几种形式:(1)字母型:如是无理数,等都是无理数,而不是分数;(2)构造型:如2.10100100010000(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0可用式子表示为: (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数用式子表示:若a是实数,则|a|0要点诠释:若则则表示的几何意义就是在数轴上表示数a与数b的点之间的距离.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根a(a0)的平方根记作(2)一个正数a的正的平方根,叫做a的算术平方根a(a0)的算术平方根记作5.立方根如果x3=a,那么x叫做a的立方根一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a、b, 若a-b>0a>b;a-b=0a=b;a-b<0a<b.4.对于实数a,b,c,若a>b,b>c,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a2>b2a>b;或利用倒数转化:如比较与.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c)2.减法减去一个数等于加上这个数的相反数3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为0,积就为0乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac4.除法(1)除以一个数,等于乘上这个数的倒数(2)两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方(1)求n个相同因数的积的运算叫做乘方,a所表示的意义是n个a相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方(3)零指数与负指数 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算这三级运算的顺序是三、二、一如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a×10(其中110,n为整数)的形式记数的方法叫科学记数法要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a×10,其中110,n为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a×10,其中110,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】类型一、实数的有关概念1(1)a的相反数是,则a的倒数是_(2)实数a、b在数轴上对应点的位置如图所示: 则化简=_(3)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约_【答案】(1)5 ; (2)-a-b; (3)1.02×107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A8.55×106     B8.55×107    C8.55×108        D8.55×109【答案】C.类型二、实数的分类与计算2下列实数、sin60°、3.14159、-、中无理数有( )个A1 B2 C3 D4【答案】C. 【解析】无理数有sin60°、.【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断举一反三:【变式】在中,哪些是有理数? 哪些是无理数?【答案】都是有理数;都是无理数.3计算:+|23|()1(2015+)0【答案与解析】解:原式=2+3231=1【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等只要准确把握各自的意义,就能正确的进行运算举一反三:【变式1】计算:计算:|1|+20120()13tan30°【答案】解:原式=1+1(3)3×=+3=3【变式2】计算:【答案】设n=2001,则原式=(把n2+3n看作一个整体)=n2+3n+1=n(n+3)+1=2001×2004+1=4010005.类型三、实数大小的比较4比较下列每组数的大小:(1)与 (2)a与(a0)【答案与解析】(1),而与可以很容易进行比较得到:,所以;(2)当a<-1或O<a<1时,a<;当-1<a<0或a>1时,a>;当a=时,a=.【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较; (2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把的值看成是关于a的反比例函数,把a的值看成是关于a的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小:(1)和 (2)和【答案】(1)将其通分,转化成同分母分数比较大小, , ,所以.(2)因为,所以.类型四、平方根的应用5已知:x ,y是实数,若axy-3x=y,则实数a的值是_.【答案】.【解析】,即两个非负数相加和为0,则这两个非负数必定同时为0,(y-3)2=0, x=, y=3又axy-3x=y, a=.【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6细心观察图形,认真分析各式,然后解答问题 (1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,(2)因为OA1=,OA2=,OA3=,所以OA10=(3)S12+ S22+ S32+ S102=.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,你是否发现苹果的排列规律?猜猜看,第十行有_个苹果【答案】2(512).中考总复习:实数知识讲解 (提高)【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用;4.逐步形成数形结合、分类讨论、建模思想.【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:2.按性质符号分类:有理数:整数和分数统称为有理数或者“形如(m,n是整数n0)”的数叫有理数无理数:无限不循环小数叫无理数实数:有理数和无理数统称为实数要点诠释:常见的无理数有以下几种形式:(1)字母型:如是无理数,等都是无理数,而不是分数;(2)构造型:如2.10100100010000(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0可用式子表示为: (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数用式子表示:若a是实数,则|a|03.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根a(a0)的平方根记作(2)一个正数a的正的平方根,叫做a的算术平方根a(a0)的算术平方根记作5.立方根如果x3=a,那么x叫做a的立方根一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0要点诠释:若则则表示的几何意义就是在数轴上表示数a与数b的点之间的距离.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a、b, 若a-b>0a>b;a-b=0a=b;a-b<0a<b.4.对于实数a,b,c,若a>b,b>c,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a2>b2a>b;或利用倒数转化:如比较与.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c)2.减法减去一个数等于加上这个数的相反数3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为0,积就为0乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac4.除法(1)除以一个数,等于乘上这个数的倒数(2)两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方(1)求n个相同因数的积的运算叫做乘方,a所表示的意义是n个a相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方(3)零指数与负指数要点诠释:(1)加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算这三级运算的顺序是三、二、一如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算(2)实数的运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc考点六、有效数字和科学记数法1.近似数一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.2.有效数字一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字3.科学记数法把一个数用±a×10(其中110,n为整数)的形式记数的方法叫科学记数法要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a×10,其中110,n为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a×10,其中110,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).考点七、数形结合、分类讨论、建模思想1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口;2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏;3. 从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个考点来解决问题,然后有的放矢.【典型例题】类型一、实数的有关概念1在下列各数中,无理数有( ).,0,0.5757757775(相邻两个5之间的7的个数逐次加1)A2个 B3个 C4个 D5个【答案】D;【解析】无理数有:,0.5757757775(相邻两个5之间的7的个数逐次加1)共有5个故答案是:D【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数举一反三:【变式】与1+最接近的整数是()A4B3C2D1【答案】B.459,23又5和4比较接近,最接近的整数是2,与1+最接近的整数是3,故选:B类型二、实数有关的计算2(1)有一列数,那么依此规律,第7个数是_;(2)已知依据上述规律,则 【答案】(1) ; (2).【解析】(1) 符号:单数为负,双数为正,所以第7个为负.分子规律:第几个数就是几,即第7个数分子就是7,分母规律:分子的平方加1,第7个数分母就是50.所以第7个数是.(2)【点评】(1) 规律:(n为正整数);(2)规律:(n为正整数).举一反三:【变式】a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,的差倒数是已知,是的差倒数,是的差倒数,是的差倒数,依此类推,则 【答案】因为,.三个一循环,因此类型三、实数大小的比较3若,试不用将分数化小数的方法比较a、b的大小【答案与解析】a=,b, a<b【点评】通过通分进行比较.举一反三:【变式】当时,比较1b与1的大小.【答案】(1)b0时,b0或b0当b0时,1b1,当b0时,1b1.类型四、平方根的应用4已知,求的值.【答案与解析】0,0,0,. 解得 则.【点评】利用0,0,0(为自然数)等常见的三种非负数及其性质,分别令它们为零,得一个三元一次方程组,解得、的值,代入后本题得以解决。举一反三:【变式】已知x、y是实数,且+(y26y+9)=0,若axy3x=y,则实数a的值是( ) A B C D【答案】A. +(y3)2=0, 3x+4=0,y3=0, x=,y=3 axy3x=y,×3a3×()=3, a= 答案选A.类型五、实数运算中的规律探索5在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了下面两个图框是用法国“小九九”计算8×9和6×7的两个示例(1)用法国“小九九”计算7×8,左、右手依次伸出手指的个数是多少?(2)设a、b都是大于5且小于10的整数,请你说明用题中给出的规则计算a×b的正确性?【答案与解析】(1)按照题中示例可知:要计算7×8,左手应伸出7-5=2个手指,右手应伸出8-5=3个手指;(2)按照题中示例可知:要计算a×b,左手应伸出(a-5)个手指,未伸出的手指数为5-(a-5)=10-a;右手应伸出(b-5)个手指,未伸出的手指数为5-(b-5)=10-b两手伸出的手指数的和为(a-5)+(b-5)=a+b-10,未伸出的手指数的积为(10-a)×(10-b)=100-10a-10b+a×b根据题中的规则,a×b的结果为10×(a+b-10)+(100-10a-10b+a×b)而10×(a+b-10)+(100-10a-10b+a×b)=10a+10b-100+100-10a-10b+a×b=a×b所以用题中给出的规则计算a×b是正确的【点评】此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系6探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌譬如:任意找一个3的倍数的数,先把这个数的每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字再立方,求和,重复运算下去,就能得到一个固定的数T=_,我们称它为数字“黑洞”,T为何具有如此魔力通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T是()A363 B153 C159 D456【答案】B;【解析】把6代入计算,第一次立方后得到216;第二次得到225;第三次得到141;第四次得到66;第五次得到432;第六次得到99;第七次得到1458;第八次得到702;第九次得到351;第十次得到153;开始重复,则T=153故选B【点评】此题只需根据题意,任意找一个符合条件的数进行计算,直至计算得到重复的数值,即是所求的黑洞数可以任意找一个3的倍数,如6第一次立方后得到216;第二次得到225;第十次得到153;开始重复,则可知T=153举一反三:【变式1】下面由火柴棒拼出的一系列图形中,第个图形是由个正方形组成的,通过观察可以发现:(1)第四个图形中火柴棒的根数是 ;(2)第个图形中火柴棒的根数是 .【答案】(1)13;(2).【变式2】有一列数1、2、3、4、5、6、,当按顺序从第2个数到第6个数时,共数了 个数;当按顺序从第个数到第个数()时,共数了 个数。【答案】5;.中考总复习:数与式综合复习知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算【知识网络】 【考点梳理】考点一、实数的有关概念、性质1实数及其分类 实数可以按照下面的方法分类: 实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数无限不循环小数叫做无理数 有理数和无理数统称实数2数轴 规定了原点、正方向和单位长度的直线叫做数轴每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数实数和数轴上的点是一一对应的关系要点诠释: 实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础3相反数 实数a和-a叫做互为相反数零的相反数是零 一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b0;反过来,如果a+b0,那么a和b互为相反数4绝对值 一个实数的绝对值就是数轴上表示这个数的点与原点的距离 一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a0,那么|a|a; 如果a0,那么|a|-a; 如果a0,那么|a|0要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数5实数大小的比较 在数轴上表示两个数的点,右边的点所表示的数较大6有理数的运算 (1)运算法则(略) (2)运算律: 加法交换律 a+bb+a; 加法结合律 (a+b)+ca+(b+c); 乘法交换律 abba; 乘法结合律 (ab)ca(bc); 分 配 律 a(b+c)ab+ac (3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减 算式里如果有括号,先进行括号内的运算 如果只有同一级运算,从左到右依次运算7平方根 如果x2a,那么x就叫做a的平方根(也叫做二次方根)要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根8算术平方根 正数a的正的平方根,叫做a的算术平方根零的算术平方根是零要点诠释: 从算术平方根的概念可以知道,算术平方根是非

    注意事项

    本文(2024年中考数学总复习:实数--巩固练习(提高).doc)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开