2024年高考数学复习解答题解题思路训练专题05 利用导函数研究恒成立问题(典型题型归类训练) 含解析.docx
-
资源ID:97253237
资源大小:1.41MB
全文页数:29页
- 资源格式: DOCX
下载积分:9.99金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2024年高考数学复习解答题解题思路训练专题05 利用导函数研究恒成立问题(典型题型归类训练) 含解析.docx
2024年高考数学复习解答题解题思路训练专题05 利用导函数研究恒成立问题(典型题型归类训练)一、必备秘籍分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式;步骤:分类参数(注意分类参数时自变量的取值范围是否影响不等式的方向)转化:若)对恒成立,则只需;若对恒成立,则只需求最值.二、典型题型1(2023·上海崇明·统考一模)若存在实数,对任意实数,使得不等式恒成立,则实数m的取值范围是( )ABCD【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,总有成立,故;(2)若,有成立,故;(3)若,有成立,故;(4)若,有,则的值域是值域的子集 2(2023·海南省直辖县级单位·校考模拟预测)若恒成立,则的取值范围是( )ABCD3(2023·江西九江·统考一模)若对,不等式恒成立,则实数的取值范围是( )ABCD4(2023·全国·模拟预测)已知函数,若对于任意的,都有,则实数的取值范围是 .【点睛】恒成立问题方法指导:方法1:分离参数法求最值(1)分离变量构造函数,直接把问题转化为函数的最值问题(2)恒成立;恒成立;能成立;能成立.方法2:根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解5(2023·湖南永州·统考一模)若函数,当时,恒有,则实数t的取值范围 6(2023·四川雅安·统考一模)已知函数在时有极小值.曲线在点处的切线方程为.(1)求的值;(2)若对任意实数恒成立,求实数的取值范围.7(2023·四川内江·统考一模)已知函数(1)当时,求的极值;(2)若不等式恒成立,求实数的取值范围【点睛】方法点晴,第(2)问中的恒成立问题,常用的方法,一是直接构造函数,求出函数的最值;二是通过参变分离,再构造函数,通过求函数最值来解决问题.三、专项训练一、单选题1(2023·四川眉山·仁寿一中校考模拟预测)已知,且恒成立,则k的值不可以是( )A2B0C2D42(2023·江西南昌·江西师大附中校考三模)若不等式在上恒成立,则实数的取值范围是( )ABCD3(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知,为实数,不等式在上恒成立,则的最小值为( )A4B3C2D1二、多选题4(2023·山西·校联考模拟预测)已知,则的可能取值有( )ABCD5(2023·安徽马鞍山·统考一模)已知函数,若恒成立,则实数的可能的值为( )ABCD6(2023·海南·模拟预测)若时,关于的不等式恒成立,则实数的值可以为( )(附:)ABCD三、填空题7(2023上·河北保定·高三定州市第二中学校考阶段练习)已知函数,若对恒成立,则实数a的取值范围是 8(2023·河南洛阳·统考模拟预测)已知函数,若时,恒成立,则实数的取值范围是 .四、问答题9(2023·全国·模拟预测)已知函数(其中为自然对数的底数)(1)当时,讨论函数在上的单调性;(2)若对一切,恒成立,求实数的取值范围10(2023·全国·模拟预测)已知函数(1)若曲线在处的切线方程为,求实数a,b的值;(2)若,对任意的,且,不等式恒成立,求m的取值范围11(2023下·安徽合肥·高二统考期末)已知函数(1)当时,讨论在区间上的单调性;(2)若当时,求的取值范围12(2023·北京西城·北师大实验中学校考三模)已知函数(1)当时,求的零点;(2)讨论在上的最大值;(3)是否存在实数,使得对任意,都有?若存在,求的取值范围;若不存在,说明理由专题05 利用导函数研究恒成立问题(典型题型归类训练)一、必备秘籍分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式;步骤:分类参数(注意分类参数时自变量的取值范围是否影响不等式的方向)转化:若)对恒成立,则只需;若对恒成立,则只需求最值.二、典型题型1(2023·上海崇明·统考一模)若存在实数,对任意实数,使得不等式恒成立,则实数m的取值范围是( )ABCD【答案】A【详解】不等式等价于即,原命题等价于存在实数,对任意实数不等式恒成立,等价于存在实数,不等式成立,记,则,(1)当时,对任意,恒成立,即在上单调递减当,即时,当,即时,从而当时,则在上单调递减,在上单调递增,所以;(2)当时,令,解得, 在区间上单调递增,在上单调递减,当时,此时, 当即时,当即时,从而当时, 则在区间上单调递减,在区间上单调递增,所以;令,则,记,则,当时,恒成立,即在区间上单调递减,即,即;当时,此时,当即时,当即时,从而当时,则在区间上单调递减,在区间上单调递增,所以;(3)当时,对任意,恒成立,即在上单调递增,当,即时,当,即时,从而当时,则在上单调递减,在上单调递增,所以;综上所述,所以.故选:A【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,总有成立,故;(2)若,有成立,故;(3)若,有成立,故;(4)若,有,则的值域是值域的子集 2(2023·海南省直辖县级单位·校考模拟预测)若恒成立,则的取值范围是( )ABCD【答案】C【详解】当时,则,不符合题意; 当时,恒成立,即恒成立,设,令,得,当时,单调递增;当时,单调递减.故当时,取得最大值,所以,解得,故选:C3(2023·江西九江·统考一模)若对,不等式恒成立,则实数的取值范围是( )ABCD【答案】C【详解】由已知得:,由,得即,可得令,则,求导得,解得;,解得,在上单调递增,在上单调递减,且当时;当时,函数图像如图所示 ,由及的图像可知,恒成立,即成立,而,实数的取值范围是.故选:C4(2023·全国·模拟预测)已知函数,若对于任意的,都有,则实数的取值范围是 .【答案】【详解】对于任意的,都有,即,令,则,且对于任意的,都有.当时,所以,所以在上单调递减,所以,符合题意;当时,令,则,令,得.当时,则,所以当时,在上单调递减,所以当时,即,所以在上单调递增,所以,这与矛盾,不符合题意;当时,则,所以当时,在上单调递增,所以,即,所以在上单调递减,符合题意.综上,实数的取值范围是.故答案为:.【点睛】恒成立问题方法指导:方法1:分离参数法求最值(1)分离变量构造函数,直接把问题转化为函数的最值问题(2)恒成立;恒成立;能成立;能成立.方法2:根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解5(2023·湖南永州·统考一模)若函数,当时,恒有,则实数t的取值范围 【答案】【详解】因为时,恒有,所以,即恒成立.设,则,且,令,则,所以当时,在单调递减;当时,在单调递增;所以,所以在恒成立,故在单调递增,所以恒成立,即,所以恒成立,令,则,所以当时,在单调递增;当时,在单调递减;所以.所以.故答案为:.6(2023·四川雅安·统考一模)已知函数在时有极小值.曲线在点处的切线方程为.(1)求的值;(2)若对任意实数恒成立,求实数的取值范围.【答案】(1)(2)【详解】(1)由题意,在中,在时有极小值.曲线在点处的切线方程为.即 ,当时,在上单调递增.当时,在上单调递减.当时,在时有极小值.故符合题意,即为所求.(2)由题意及(1)得,在中,即对任意实数恒成立, 设,则. 当时,则,故在上单调递增;当时,则,故在上单调递减;当时,则,故时有极小值,也就是的最小值,故即为所求.【点睛】关键点点睛:本题考查函数的求导,导数法判断函数单调性,导数法解决函数恒成立问题,构造函数法,考查学生的计算能力和逻辑思维能力,具有很强的综合性.7(2023·四川内江·统考一模)已知函数(1)当时,求的极值;(2)若不等式恒成立,求实数的取值范围【答案】(1)极小值为,无极大值(2)【详解】(1)当时,则,由,得到,又,当时,时, 所以在处取到极小值,极小值为,无极大值.(2)由恒成立,得到恒成立,即恒成立,又,所以恒成立,令,则,令,则恒成立,即在区间上单调递减,又,所以当时,时,即时,时,所以在区间上单调递增,在区间上单调递减,故,所以,即,所以,实数的取值范围为.【点睛】方法点晴,第(2)问中的恒成立问题,常用的方法,一是直接构造函数,求出函数的最值;二是通过参变分离,再构造函数,通过求函数最值来解决问题.三、专项训练一、单选题1(2023·四川眉山·仁寿一中校考模拟预测)已知,且恒成立,则k的值不可以是( )A2B0C2D4【答案】D【详解】由,知,则,即,令,则,令,则,函数在上单调递增,于是,即,从而,令,则,则当时,单调递增,当时,单调递减,因此在时取得最小值2,即,所以,即可取,不能取4.故选:D2(2023·江西南昌·江西师大附中校考三模)若不等式在上恒成立,则实数的取值范围是( )ABCD【答案】B【详解】不等式在上恒成立,两边同除得在上恒成立,令,则,所以当时,单调递减,当时,单调递增,所以,令,即在上恒成立,所以只需即可,令,则,令,则在上恒成立,单调递增,又因为,所以当时,单调递减,当时,单调递增,所以,即,故选:B3(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知,为实数,不等式在上恒成立,则的最小值为( )A4B3C2D1【答案】C【详解】设,当时,函数在上单调递增,此时,在不恒成立,不合题意当时,时,函数在上单调递增,时,函数在上单调递减,所以在时取得最大值,由题意不等式在恒成立,只需即,所以,设,当时,在区间上单调递减,当时,在区间上单调递增,所以在取得最小值为,所以最小值为,故选:C二、多选题4(2023·山西·校联考模拟预测)已知,则的可能取值有( )ABCD【答案】BD【详解】已知,当时,成立;当时,恒成立或恒成立;即恒成立或恒成立;设单调递减;单调递增;无最大值.设单调递减;单调递增;无最大值.当时,成立或成立;当时,成立或无解;当时,恒成立或恒成立;即恒成立或恒成立; 设单调递减;单调递增;无最小值.设单调递减;无最小值.当时, 恒成立或成立;当时,成立;或无解;所以.故选:BD .5(2023·安徽马鞍山·统考一模)已知函数,若恒成立,则实数的可能的值为( )ABCD【答案】AD【详解】,故恒成立,转化成恒成立,记,则在单调递增,故由得,故恒成立,记,故当时,单调递减,当时,单调递增,故当时,取最大值,故由恒成立,即,故,故选:AD6(2023·海南·模拟预测)若时,关于的不等式恒成立,则实数的值可以为( )(附:)ABCD【答案】BD【详解】由题意知:当时,恒成立;令,则,令,则,当时,恒成立,即恒成立,在上单调递增,即实数的取值范围为.,.故选:BD.三、填空题7(2023上·河北保定·高三定州市第二中学校考阶段练习)已知函数,若对恒成立,则实数a的取值范围是 【答案】【详解】易知,由可得,即,则有,设,易知在上单调递增,故,所以,即,设,令,故在上单调递减,在上单调递增,所以,则有,解之得故答案为:.8(2023·河南洛阳·统考模拟预测)已知函数,若时,恒成立,则实数的取值范围是 .【答案】【详解】,则,则时,单调递增.时,恒成立,即恒成立,则在上恒成立,则即在上恒成立,令,则则当时,单调递减;当时,单调递增.则当时取得最小值,则则实数的取值范围是故答案为:四、问答题9(2023·全国·模拟预测)已知函数(其中为自然对数的底数)(1)当时,讨论函数在上的单调性;(2)若对一切,恒成立,求实数的取值范围【答案】(1)函数在上单调递减,在上单调递增(2)【详解】(1)当时,则记,则令,得当时,;当时,所以在上单调递减,在上单调递增,即在上单调递减,在上单调递增又,所以当时,;当时,所以函数在上单调递减,在上单调递增(2)当时,恒成立,即恒成立当时,此时当时,即记,则当时,;当时,所以在上单调递减,在上单调递增,故,所以,综上可知,实数m的取值范围为10(2023·全国·模拟预测)已知函数(1)若曲线在处的切线方程为,求实数a,b的值;(2)若,对任意的,且,不等式恒成立,求m的取值范围【答案】(1),;(2).【详解】(1)函数的定义域为,求导得,由曲线在处的切线方程为,得,解得,所以,.(2)当时,函数,求导得,当时,即函数在上单调递减,不妨设,则,不等式恒成立,即恒成立,则恒成立,设,于是,恒成立则在上单调递增,于是在上恒成立,即在上恒成立,当且仅当时取等号,因此,所以m的取值范围为11(2023下·安徽合肥·高二统考期末)已知函数(1)当时,讨论在区间上的单调性;(2)若当时,求的取值范围【答案】(1)在上单调递增,在上单调递减(2)【详解】(1)当时,当时,;当时,所以在上单调递增,在上单调递减.(2)设,由题意知当时,求导得设,则,令,则,当当故函数在单调递增,在单调递减,所以;令,可得,故在单调递增时,所以当时,故在上单调递增,当时,且当时,若,则,函数在上单调递增,因此,符合条件若,则存在,使得,即,当时,则在上单调递减,此时,不符合条件综上,实数的取值范围是12(2023·北京西城·北师大实验中学校考三模)已知函数(1)当时,求的零点;(2)讨论在上的最大值;(3)是否存在实数,使得对任意,都有?若存在,求的取值范围;若不存在,说明理由【答案】(1)(2)答案见解析(3)存在,的取值范围是【详解】(1)的定义域为,当时,所以当时,单调递增,当时,单调递减,又因为当时,所以仅有一个零点,.(2),令,解得,在区间内,单调递增极大值单调递减当(即)时,在上单调递减,当(即)时,在上单调递增,当(即)时,在上单调递增,在上单调递减,综上所述,当时,的最大值为,当时,的最大值为,当时,的最大值为.(3)由(2)知在上,构造函数,由题意应使,令,解得1单调递减极小值单调递增所以,所以使的实数只有,即的取值范围是