【生物】必修二教材《遗传与进化》易错易混知识点 高一下学期生物期末复习(人教版2019必修二).docx
-
资源ID:97253396
资源大小:177.25KB
全文页数:23页
- 资源格式: DOCX
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【生物】必修二教材《遗传与进化》易错易混知识点 高一下学期生物期末复习(人教版2019必修二).docx
遗传与进化易错易混知识点第一部分 教材易错知识1. “演绎”测交辨析“演绎”不同于测交实验,前者只是理论推导,后者则是在大田中进行测交实验验证。2. 认为杂合子(Dd)产生雌雄配子的数量相等辨析F1(Dd)产生配子的数量中D()d()、D()d();D()D()、d()d()。3. 小样本问题小样本不一定符合遗传定律辨析遗传定律是一种统计学规律,只有样本足够大时才有规律性。当子代数目较少时,不一定符合预期的分离比。如两只杂合黑豚鼠杂交,生下的4只小豚鼠不一定符合3黑1白,有可能只有黑色或只有白色,也有可能既有黑色又有白色,甚至还可能3白1黑。4. 不明确果皮、种皮及胚、胚乳的来源及相关性状的统计时机辨析(1)果皮(包括豆荚)、种皮分别由子房壁、珠被(母本体细胞)发育而来,基因型与母本相同。(2)胚(由胚轴、胚根、胚芽、子叶组成)由受精卵发育而来,基因型与其发育成的植株相同。(3)胚乳由受精极核发育而来,基因型为母本配子基因型的两倍加上父本配子基因型。以上各部分的基因型如下图所示(4)相关性状统计(欲统计甲、乙杂交后的F1性状)种子胚(如子叶颜色)和胚乳性状的统计:在本次杂交母本植株所结种子内直接统计即可。其他所有性状的统计(包括F1的种皮颜色、植株高矮、花的颜色、果皮的颜色或味道等)均需将上述杂交后所产生的种子种下,在新长成的植株中做相应统计。5. 从性遗传伴性遗传辨析从性遗传是指由常染色体上的基因控制的性状,在表现型上受个体性别影响的现象,这种现象主要通过性激素起作用。从性遗传和伴性遗传的表现型都与性别有密切的联系,但它们是两种截然不同的遗传方式。伴性遗传的基因位于性染色体上,而从性遗传的基因位于常染色体上;从性遗传的基因在传递时并不与性别相联系,其与位于性染色体上基因的传递有本质区别。从性遗传的本质:表现型基因型环境条件(性激素种类及含量差异)。6. 不清楚F2出现9331的4个条件辨析 (1)所研究的每一对相对性状只受一对等位基因控制,而且等位基因要完全显性。(2)不同类型的雌、雄配子都能发育良好,且受精的机会均等。(3)所有后代都应处于比较一致的环境中,而且存活率相同。(4)供实验的群体要足够大,个体数量要足够多。7. 误认为在两对相对性状的杂交实验中,F2中出现了“新性状”辨析在两对相对性状的杂交实验中,F2中出现了新的表现型,但并未出现新性状,新表现型的出现是原有性状重新组合的结果。8. 误认为YyRr×yyrr和yyRr×Yyrr均为测交辨析测交是指F1与隐性纯合子杂交。因此虽然YyRr×yyrr和yyRr×Yyrr这两对组合的后代的基因型相同,但只有YyRr×yyrr称为测交。9. 重组类型的内涵及常见错误辨析(1)明确重组类型的含义:重组类型是指F2中表现型与亲本不同的个体,而不是基因型与亲本不同的个体。(2)含两对相对性状的纯合亲本杂交,F2中重组类型所占比例并不都是616。当亲本基因型为YYRR和yyrr时,F2中重组类型所占比例是616。当亲本基因型为YYrr和yyRR时 ,F2中重组类型所占比例是1169161016。10. 不清楚两对等位基因的个体自由交配时的计算方法辨析自由交配时,需计算出该群体中每一种雄(雌)配子占全部雄(雌)配子的概率,使用精、卵细胞随机结合法即可求出所需个体。11. 误认为所有真核生物均有性染色体或误认为性染色体上的基因均与性别决定有关辨析(1)只有具性别分化(雌雄异体)的生物才有性染色体,如下生物无性染色体:所有无性别之分的生物(如酵母菌等)均无性染色体。虽有性别之分,但雌雄同株(或雌雄同体)的生物均无性染色体,如玉米、水稻等。虽有性别分化且为雌雄异体,但其雌雄性别并非取决于“染色体类型”而是取决于其他因素的生物,如蜜蜂、蚂蚁、龟等。(2)性染色体上的基因未必均与性别决定有关,如色觉基因、某些凝血因子基因均位于X染色体上,而外耳道多毛症基因则位于Y染色体上。此外性染色体并非只存在于生殖细胞中。12. XY等位基因辨析(1)XY代表一对同源染色体并非代表等位基因。(2)Y上不存在控制色觉正常和红绿色盲的基因,但有其他基因。13. 男孩患病概率患病男孩概率辨析 (1)由常染色体上的基因控制的遗传病患病概率与性别无关,不存在性别差异,因此,男孩患病概率女孩患病概率患病概率。“患病”与“男孩”(或女孩)是两个独立事件,因此需把患病概率×性别比例,即患病男孩概率患病女孩概率患病孩子概率×1/2。(2)由性染色体上的基因控制的遗传病致病基因位于性染色体上,它的遗传与性别连锁,“男孩患病”是指男孩中患病的,不考虑女孩;“患病男孩”则是所有孩子中患病的男孩,二者主要是概率计算的范围不同。即患病男孩的概率患病男孩在后代全部孩子中的概率;男孩患病的概率后代男孩中患病的概率。14. 误认为遗传性疾病都是先天性的或先天性疾病都是遗传病辨析(1)遗传病可能是先天发生,也可能是后天发生,如有些遗传病可在个体生长发育到一定年龄才表现出来;后天性疾病也不一定不是遗传病。(2)先天性疾病不一定是遗传病,如母亲在妊娠期前三个月感染风疹病毒可使胎儿患先天性心脏病或先天性白内障。15. 误认为不携带遗传病基因的个体不会患遗传病,携带遗传病基因的个体一定患遗传病辨析携带遗传病基因的个体不一定会患遗传病,如Aa不是白化病患者;不携带遗传病基因的个体也可能会患遗传病,如染色体异常遗传病。16. 肺炎双球菌转化实验的三个误区辨析(1)转化的实质是基因重组而非基因突变肺炎双球菌转化是将S型细菌的DNA片段整合到R型细菌的DNA中,使受体细胞获得了新的遗传信息,即发生了基因重组。(2)并非所有的R型细菌都被转化由于转化受到DNA的纯度、两种细菌的亲缘关系、受体菌的状态等因素的影响,因此转化过程中并不是所有的R型细菌都被转化成S型细菌,只是少部分R型细菌被转化成S型细菌。(3)加热导致DNA变性后可复性加热杀死S型细菌的过程中,其蛋白质变性失活,但是其内部的DNA在加热结束后随温度的降低又逐渐恢复活性。17. 噬菌体侵染细菌实验的两个关键环节辨析两个关键环节“保温”与“搅拌”保温时间要合适若保温时间过短或过长会使32P组的上清液中出现放射性。原因是部分噬菌体未侵染或子代噬菌体被释放出来。“搅拌”要充分如果搅拌不充分,35S组部分噬菌体与大肠杆菌没有分离,噬菌体与细菌共存于沉淀物中,这样造成沉淀物中出现放射性。18. 误认为原核生物或真核生物细胞质中的遗传物质为RNA或认为某一生物的遗传物质“主要是DNA”辨析(1)真核生物(包括细胞质、细胞核中)和原核生物的遗传物质一定是DNA。(2)病毒的遗传物质是DNA或RNA。(3)绝大多数生物的遗传物质是DNA,因此DNA是主要的遗传物质。19. 误认为DNA分子都是双链结构或认为DNA分子中嘌呤一定等于嘧啶或认为嘌呤嘧啶时一定为双链DNA分子辨析DNA分子一般为“双螺旋结构”,但也有些DNA分子呈“单链”结构,在此类DNA分子中嘌呤与嘧啶可能相等也可能不相等。由此可见,双链DNA分子中嘌呤“AG”固然等于“TC”或(AC)/(TG)1,但存在该等量或比例关系时,未必一定是双链DNA分子。20. 误认为DNA分子复制“只发生于”细胞核中辨析细胞生物中凡存在DNA分子的场所均可进行DNA分子的复制,其场所除细胞核外,还包括叶绿体、线粒体、原核细胞的拟核及质粒。需特别注意的是,DNA病毒虽有DNA分子,但其不能独立完成DNA分子的复制病毒的DNA复制必须借助寄主细胞完成,在其DNA分子复制时,病毒只提供“模板链”,其他条件(包括场所、原料、酶、能量)均由寄主细胞提供。21. 对DNA复制过程中“第n次”还是“n次”复制所需某种碱基数量的计算原理不清辨析第n次复制是所有DNA只复制第n次所需碱基数目;n次复制是指由原来的DNA分子复制n次所需碱基数目。22. 误认为染色体是基因的唯一载体辨析(1)真核细胞中的线粒体和叶绿体也是基因的载体。(2)原核细胞无染色体,拟核中的DNA分子和质粒DNA均是裸露的。23. 混淆基因、DNA与染色体的关系辨析24. 对DNA和RNA合成的判断有误辨析用放射性同位素标记T或U可判断DNA和RNA的合成。若大量消耗T,可推断正在发生DNA的合成;若大量消耗U,可推断正在进行RNA的合成。25. 不能准确界定真核生物、原核生物基因表达或误认为真核细胞中转录、翻译均不能“同时”进行辨析(1)凡转录、翻译有核膜隔开或具有“时空差异”的应为真核细胞“核基因”指导的转录、翻译。(2)原核细胞基因的转录、翻译可“同时进行”。(3)真核细胞的线粒体、叶绿体中也有DNA及核糖体,其转录、翻译能“同时进行”。26. 误认为逆转录酶同其他酶及能量、场所、原料一样,均由病毒的寄主细胞提供(在寄主细胞中合成由寄主细胞提供)辨析必修2 P69“资料分析”中有如下描述:(1)“1965年,科学家在某种RNA病毒里发现了一种RNA复制酶,能对RNA进行复制”。(2)“1970年,科学家在致癌的RNA病毒中发现逆转录酶,它能以RNA为模板合成DNA”。由此可见,RNA复制酶、逆转录酶均来自病毒自身,当然该酶起初应在寄主细胞的核糖体中合成并由寄主细胞提供原料而完成。27. 不能正确辨明六类酶解旋酶、DNA聚合酶、限制酶、DNA连接酶、RNA聚合酶、逆转录酶辨析(1)解旋酶在DNA分子复制时使氢键断裂。(2)DNA聚合酶在DNA分子复制时依据碱基互补配对原则使单个脱氧核苷酸连成脱氧核苷酸链。(3)限制酶是使两个脱氧核苷酸之间的磷酸二酯键断裂。(4)DNA连接酶是将两个DNA分子片段的末端“缝合”起来形成磷酸二酯键。(5)RNA聚合酶是RNA复制或DNA转录时依据碱基互补配对原则将单个核糖核苷酸连接成RNA链。(6)逆转录酶是某些RNA病毒在宿主细胞内利用宿主细胞的脱氧核苷酸合成DNA的一种酶。28. 基因突变DNA中碱基对的增添、缺失和替换辨析(1)基因是具有遗传效应的DNA片段,不具有遗传效应的DNA片段也可发生碱基对的改变。(2)有些病毒的遗传物质是RNA,RNA中碱基的增添、缺失和替换引起病毒性状变异,广义上也称为基因突变。29. 误认为基因突变会使基因“位置”或“数目”发生改变或错将基因中“碱基对”缺失视作“基因”缺失辨析基因突变仅改变了基因内部结构,产生了新基因,并未改变基因位置,也未改变基因数量。基因中碱基对缺失,只是成了新基因,即基因仍在,只是“以旧换新”,并非“基因缺失”。30. 将基因突变的结果“产生新基因”与“产生等位基因”混淆辨析病毒和原核细胞的基因一般是单个存在的,不存在等位基因。因此,真核生物基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。31. 易错点84误认为基因重组交叉互换辨析(1)基因重组有三种类型:同源染色体的非姐妹染色单体之间交叉互换、非同源染色体上的非等位基因自由组合和DNA重组技术。(2)染色体片段交换发生在同源染色体之间叫基因重组,而发生在非同源染色体之间叫易位,属于染色体结构变异。32. 误认为精卵随机结合属于基因重组辨析精子与卵细胞的自由(随机)结合是生殖细胞间的随机结合,不是基因重组。33. 混淆基因重组与基因突变的“说词”辨析比较项目基因突变基因重组生物变异生物变异的“根本”来源生物变异的“重要”来源生物进化为生物进化提供原始材料为生物进化提供“丰富”的材料生物多样性形成生物多样性的“根本”原因形成生物多样性的“重要”原因之一发生概率很小(常有“罕见”“稀有”“偶尔”等说法)非常大(常有“正常发生”或“往往发生”等说法)34. 误认为单倍体只含一个染色体组或认为含多个染色体组者均为多倍体辨析单倍体强调的是由配子发育而来的个体,其细胞中染色体组数取决于配子中所含染色体组数,可能为1组、2组或多组。含多个染色体组的个体是单倍体还是多倍体取决于其发育起点是配子还是受精卵,若为前者,一定是单倍体,若为后者,一定是多倍体。35. 错将四倍体AAaa(由Aa经秋水仙素诱导后形成)产生的配子类型及比例算作1AA2Aa1aa辨析AAaa产生配子状况可按右图分析,由于染色体互为同源染色体,减数分裂时四条染色体分至细胞两极是“随机”的,故最终产生的子细胞染色体及基因状况应为与(AA与aa)、与(Aa与Aa)、与(Aa与Aa),由此可见,AAaa产生的配子类型及比例为1AA4Aa1aa。36. 混淆“最简便”与“最快速”辨析“最简便”应为“易操作”,“最快速”则未必简便,如用单倍体育种获得有显性性状的纯合子,可明显缩短育种年限,但其技术含量却较高。37. 误认为花药离体培养就是单倍体育种辨析单倍体育种主要包括杂交、花药离体培养、秋水仙素处理和筛选四个过程。38. 混淆“可遗传变异”与“可育”辨析“可遗传变异”“可育”:三倍体无子西瓜、骡子、二倍体的单倍体等均表现“不育”,但它们均属可遗传变异其遗传物质已发生变化,若将其体细胞培养为个体,则可保持其变异性状这与仅由环境引起的不可遗传的变异有着本质区别。如无子番茄的“无子”原因是植株未受粉,生长素促进了果实发育,这种“无子”性状是不可以保留到子代的,将无子番茄进行组织培养时,若能正常受粉,则可结“有子果实”。 39. 误认为变异出现于环境变化之后,是在环境“诱发”下产生的辨析变异在环境变化之前已经产生且是不定向的,环境只是起选择作用。40. 能产生后代同一物种辨析两个个体虽然能够交配产生后代,但子代有可能高度不育,如马和驴虽然能够产生子代,但子代不育,因此马和驴是两个物种。41. 种群物种辨析(1)物种是自然状态下能够自由交配并产生可育后代的一群生物,一个物种可能在不同地点和时间形成不同的种群。(2)种群是同一种生物、同一地点、同一时间形成的一个群体。种群“小”,不同种群间有地理隔离;物种“大”,不同物种间有生殖隔离。(3)判断生物是不是同一物种,如果来历不明,形态结构相似,可靠依据是看是否存在生殖隔离。若存在生殖隔离,则不是同一物种。42. 混淆自交和自由交配时基因(型)频率的变化辨析(1)某种群的所有个体自交,若没有进行选择,则自交后代的基因频率不变,基因型频率会改变,并且杂合子的基因型频率降低,纯合子的基因型频率升高。(2)某种群的所有个体自由交配,若没有基因突变且各种基因型的个体生活能力相同时,后代的基因频率不变。后代的基因型频率是否改变有以下两种情况:如果没有达到遗传平衡,则后代的基因型频率会改变并达到遗传平衡;如果已达到遗传平衡,则后代的基因型频率不会改变。43. 不能准确运用男性的基因型频率计算该地区X染色体的基因频率辨析以红绿色盲为例,红绿色盲为伴X染色体隐性遗传病,色盲基因b位于X染色体上,对男性(XY)而言,每个男性体细胞中只有一条X染色体,含有致病基因就为患者,不含则为正常个体,无携带者。若某地区男性中色盲占x。则此地区Xb的基因频率也为x,此地区女性色盲率则为x2。44. 不能辨别异卵双生和同卵双生辨析(1)同卵双生:一个受精卵发育成两个胎儿的双胎,称单卵双胎,单卵双胎形成的胎儿,性别相同。外貌相似,如果两个胎儿未完成分开,则形成联体畸形。(2)异卵双生:卵巢同时排出两个卵,两个卵各自受精,分别发育成一个胎儿,称双卵双生 ,双卵双胎形成的胎儿,性别可相同也可不同,其外貌与一般的兄弟姐妹相似。45. 易混使用射线引发瓯柑细胞基因突变,则细胞发生基因突变概率最高的时期辨析间期。因为在细胞分裂间期,染色体、DNA要复制,DNA复制就要解螺旋,双链中的氢键被打开,DNA上的碱基最不稳定,最容易发生突变。46. 判断异常配子问题出现在减数第一次分裂还是减二辨析例如:XXYXXY可能是X和XY结合,可见同源染色体不分离,是减数第一次分裂异常可能是XX和Y结合,可能是同源染色体不分离,是减数第一次分裂异常;可能是姐妹染色单体分开形成的染色体不分离,是减数第二次分裂异常。47. 认为X染色体上的基因控制的性状在雌性个体中易于表现。辨析如果是X染色体上的显性基因,则在雌性个体中容易表达;但如果是X染色体上的隐形基因,则在雄性个体中容易表达,因为Y染色体上常常缺少与X染色体同源的区段。举例:色盲男性在我国发病率为7%,而女性仅0.5%48. 判断是否是可遗传变异?以无子西瓜和无子番茄为例辨析只有遗传物质改变的变异才遗传。遗传物质未改变只是环境改变引起的变异不遗传。无子西瓜-染色体变异,能遗传,无子番茄-遗传物质未改变只是生长的引起的变异不遗传。49. 用适宜浓度的生长素溶液处理没有授粉的番茄花蕾可获得无子果实,果实细胞的染色体数目是?辨析已知番茄的一个染色体组中染色体数为N。答案是2N但是用适宜浓度的生长素溶液处理没有授粉的番茄花蕾获得的果实只是无子,番茄其实是种子外的种皮,果皮,是由番茄植株的母体体细胞直接发育而成,所以用适宜浓度的生长素溶液处理没有授粉的番茄花蕾可获得的无子果实为2N。50. 无子番茄的获得和激素有关吗? 辨析要想得到无子番茄,就必须直设法直接由子房壁发育成果皮,而不形成种子。我们又知道,植物激素中的生长素可以促进果实的发育,而种子的形成需要经过受精作用。无子番茄的培育也就是根据这样的原理实施的。在未传粉之前,在雌蕊的柱头上涂上一定浓度的生长素即可得到无子番茄。51. 还有无籽西瓜的获得是不是用到秋水仙素的?辨析秋水仙素是不是激素。无籽西瓜的获得是联会紊乱。和秋水仙素有关,但秋水仙素不是激素。52. 基因突变和染色体变异有什么区别?不都是碱基对的变化吗?辨析从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。染色体变异是染色体的结构或数目发生变化;基因突变在显微镜下不能看到而染色体变异则可以看到。53. 基因型为aa的个体发生显性突变时是变成了AA还是Aa?还是两种都有可能?辨析一般只考虑一次突变:基因型为aa的个体发生显性突变时是变成Aa基因型为AA的个体发生隐性突变后变为Aa,性状不改变54. 突变和基因重组发生在体细胞中呢?还叫可遗传变异吗?辨析还叫可遗传变异,因为可遗传变异,只表示它可以遗传,不表明它一定能遗传。如果突变发生于体细胞,可通过无性生殖遗传。55. 非同源染色体片段的交换属于基因重组吗?辨析非同源染色体片段的交换是染色体变异,同源染色体片段的交换才属于基因重组。56. 如何根据图像准确判断细胞染色体组数?辨析有几条一样的染色体,就有几个染色体组。57. 基因型为AAaaBBBB的细胞含几个染色体组?辨析该基因型是四个染色体组。 染色体组,是指一组非同源染色体,即他们的形态功能各不相同。碰到这类题只要数一下同类等位基因重复几个就行了。如AAaa有四个或者BBBB有四个,就是四个染色体组。58. “单倍体一定高度不育”为什么错?辨析例如:用秋水仙素处理二倍体西瓜的幼苗,能得到同源四倍体,若将该四倍体的花药进行离体培养能得到含有偶数个相同的染色体组数的单倍体,它可育。八倍体小黑麦是异源多倍体,它的花药进行离体培养能得到含有偶数个相同的染色体组数的单倍体,但它不可育。所以单倍体不一定高度不育59. 单倍体什么性状能看出来?辨析有的性状单倍体能看出来,如植物的颜色,抗病性等60. 生态系统多样性形成的原因可以概括为什么?辨析因生物多样性主要包括三个层次:基因多样性、物种多样性和生态系统多样性,而自然选择不能说明生态系统多样性。参见必修2 P124第二段。61. 秋水仙素是抑制纺锤丝合成还是让已形成的纺锤丝解体?那么细胞会停止分裂吗?染色体如不分离,染色体如何加倍?辨析秋水仙素既能抑制纺锤丝合成(前期)还能让已形成的纺锤丝断裂,秋水仙素阻止了细胞的分裂。着丝点的分裂与“纺锤丝”无关系,它相当于基因程序性表达。当含有“染色单体”的染色体发育到一定时候,着丝点即断裂,染色体数加倍。62. 所有的基因重组都发生在减数分裂中,对吗?辨析错。基因重组有广义,狭义的说法,狭义的基因重组发生在减数分裂中,广义的基因重组包括减数分裂,受精作用,基因工程。63. 袁隆平院士的超级杂交水稻和鲍文奎教授的适于高寒地区种植的小黑麦为什么前者依据基因重组,后者依据染色体变异?辨析我国的杂交水稻最初是利用三系杂交育种获得成功的,将两个遗传性状不同的类型经过杂交获得,所以依据的原理为基因重组,而八倍体小黑麦是经种(属)间杂交和诱导染色体数目加倍,人工创造培育的新物种。依据的是染色体变异(染色体组成倍增加)的原理。64. 育种要注意的问题有那些?辨析育种的根本目的是培育具有优良性状(抗逆性好、品质优良、产量高)的新品种,以便更好地为人类服务。65. 环境的改变会使生物产生适应性的变异吗?辨析不会;达尔文认为变异是不定向的,但环境对变异的选择是定向的,虽然随着环境的改变,适应环境的变异也会改变,但这个变异是原来就有的,而不是环境改变后产生的。66. 一对相对性状中,显性性状个体数量要比隐性性状个体多对吗?辨析肯定是错的,因为一些物种在特定的环境下,身上一些性状由显性体现出来往往受到迫害或被攻击,而相反这一性状由隐性控制恰巧能够适应生存的环境。67. 某种群基因型为AA的个体占18%,aa占6%,则A基因的频率为多少?这怎么算的?辨析某种群基因型为AA的个体占18%,aa占6%,则Aa占有76%,A基因的频率为1AA+1/2Aa=18%+1/2*76%=56%68. 教材上说:基因重组也能改变基因频率,请问,基因重组如何改变基因频率?辨析基因重组,使后代具备了多种多样的基因型,此时,并没有改变基因频率。但这种结果,为环境的选择提供了来源。通过环境的选择作用,那怕是使少数个体死亡,也必定会改变基因频率。 所以,实际上是基因重组加上自然选择就影响了基因频率。第二部分 教材边角料知识1. (5页相关信息)在孟德尔提出对分离现象解释的假说时,生物学界还没有认识到配子形成和受精过程中染色体的变化。孟德尔根据实验现象提出的遗传因子在体细胞中成对存在,在配子中单个出现,是超越自己时代的一种非凡的设想。2. (P8“练习·基础题”)淀粉遇碘变蓝色吗水稻的非糯性和糯性是一对相对性状,非糯性花粉中所含的淀粉为直链淀粉,遇碘变蓝黑色,而糯性花粉中所含的是支链淀粉,遇碘变橙红色。碘与碘液虽然只有一字之差,但其物质组成却相差甚远。碘为单质,碘液为将碘和碘化钾按一定比例溶于水形成的液体;检验是否存在淀粉时滴加的是碘液,与淀粉反应变蓝的是碘单质。直链淀粉遇碘变蓝黑色,支链淀粉遇碘变橙红色。3. (P11“思考与讨论”)多年的山柳菊研究为何让孟德尔一无所获?孟德尔对杂交实验的研究也不是一帆风顺的。他曾花了几年时间研究山柳菊,结果却一无所获。主要原因是:(1)山柳菊没有既容易区分又可以连续观察的相对性状;(2)当时没有人知道山柳菊有时进行有性生殖,有时进行无性生殖;(3)山柳菊的花小,难以做人工杂交实验。4. (18页相关信息)在减数第一次分裂前的间期染色体复制后,在光学显微镜下看不到每条染色体上的两条姐妹染色单体的原因是此时每条染色体上的两条姐妹染色单体各是一条长的细丝,呈染色质状态,5. (18页)减数第一次分裂与减数第二次分裂之间通常没有间期,或者间期时间很短,染色体不再复制(但中心体还要完成一次加倍)。6. (21页实验讨论)比较同一时刻同一种生物不同细胞的染色体特点,来推测一个精母细胞在不同分裂时期的染色体变化情况。这一做法能够立的逻辑前提:同一生物的细胞所含遗传物质相同;增殖的过程相同;不同细胞可能处于细胞周期的不同阶段。7. (25页想像空间)子代从双亲各继承了半数的染色体,双亲对子代的贡献是不一样的。受精过程中仅精子的头部(主要是细胞核)进入卵细胞(因此受精卵的染色体一半来自父方,一半来自母方;而DNA母方提供多于父方)。8. (30页)基因在染色体上的证据:摩尔根和他的学生们发明了测定基因位于染色体上相对位置的方法;并绘制出第一个果蝇各种基因在染色体上的相对位置的图:现代分子生物学技术用特定的分子(能被带荧光标记的物质识别),与染色体上的某一个基因结合,通过荧光显示,就可以确定基因在染色体上的位置。9. (31页拓展题)人的体细胞有23对染色体,但能出生的三体综合征患者的种类极少,原因可能是发生这类染色体数目变异的受精卵不能发育,或在胚胎早期就死亡了。10. (P31“练习·拓展题”)孤雌生殖自然界中,有些动植物的某些个体是由未受精的生殖细胞(如卵细胞)单独发育来的,如蜜蜂中的雄蜂等。这些生物的体细胞中染色体数目虽然减少一半,但仍能正常生活。如何解释这一现象?【提示】这些生物的体细胞中的染色体数目虽然减少一半,但仍具有一整套染色体组,携带有控制该种生物体所有性状的一整套基因。11. (34页资料分析)人类的X染色体和丫染色体无论在大小和携带的基因种类上都不一样,Y染色体只有X染色体大小的1/5左右,携带的基因比较少。12. (36页)抗维生素D佝偻病是一种显性伴性遗传病,当女性的基因型为XX"、X'X时,都是患者,但后者比前者发病轻。男性患者的基因型只有一种情况,即XY,发病程度与XX'相似。13. (P38拓展题)突变果蝇的变异类型验证按照遗传规律,白眼雌果蝇(XwXw)和红眼雄果蝇(XWY)交配,后代雄果蝇都应该是白眼的,后代雌果蝇都应该是红眼的。可是有一天,摩尔根的合作者布里吉斯(Bridges)发现白眼雌果蝇和红眼雄果蝇杂交所产生的子一代中出现了一个白眼雌果蝇。大量的观察发现,在上述杂交中,20003 000只红眼雌果蝇中会出现一只白眼雌果蝇,同样在20003 000只白眼雄果蝇中会出现一只红眼雄果蝇。你怎样解释这种奇怪的现象?如何验证你的解释?14. (P40“自我检测·思维拓展”)性反转“牝鸡司晨”是我国古代人民早就发现的性反转现象。原来下过蛋的母鸡,以后却变成公鸡,长出公鸡的羽毛,发出公鸡样的啼声。从遗传的物质基础和性别控制的角度,你怎样解释这种现象出现的可能原因?鸡是ZW型性别决定,公鸡的两条性染色体是同型的(ZZ),母鸡的两条性染色体是异型的(ZW)。如果一只母鸡性反转成公鸡,这只公鸡与母鸡交配,后代的性别会是怎样的?性别和其他性状类似,也是受遗传物质和环境共同影响的,性反转现象可能是某种环境因素,使性腺出现反转现象,但遗传物质组成不变,即这只公鸡性染色体组成仍为ZW,其与一只母鸡(ZW)交配,子代雌雄之比是21。性反转是指有功能的雄性或雌性个体转变成有功能的反向性别个体的现象。性反转是由生物的生理性状、环境变化或激素处理等因素引起的,只发生在生殖腺性别水平及由此引起的表型性征的变化,不涉及染色体与遗传物质的变化,性反转个体的有性生殖仍然遵循基因的分离定律。15. (42页问题探讨)遗传物质的特点:遗传物质必须结构稳定,能储存大量的遗传信息,可以准确地复制,遗传给下一代等。16. (44页)T噬菌体是一种专门寄生在大肠杆菌体内的病毒。17. (P45“相关信息”)为何用35S和32P分别标记T2噬菌体的蛋白质和DNA在T2噬菌体的化学组成中,60%是蛋白质,40%是DNA,对这两种物质的分析表明:仅蛋白质分子中含有硫,磷几乎都存在于DNA分子中。T2噬菌体是一种专门寄生在大肠杆菌细胞内的病毒。T2噬菌体在侵染大肠杆菌时,进入大肠杆菌体内的是噬菌体的DNA,而噬菌体的蛋白质外壳却留在大肠杆菌的外面。18. (46页思考与讨论)选用细菌或病毒作为实验材料研究遗传物质的优点:成分和结构简单,繁殖速度快,容易分析结果。19. (46页思考与讨论)艾弗里和赫尔希等人证明DNA是遗传物质实验的共同思路是把DNA与蛋白质分开,单独地直接地去观察它们的作用。20. (52页)科学家以大肠杆菌为实验材料,运用同位素示踪技术,设计了一个巧妙的实验,证明DNA的复制是以半保留的方式进行的。21. (53页旁栏思考)在DNA半保留的实验证据中区分亲代与子代的DNA分子的方法:因本实验是根据半保留复制原理和DNA密度的变化来设计的,所以在本实验中根据试管中DNA带所在的位置就可以区分亲代与子代的DNA分子。22. (54页)DNA分子的复制是一个边解旋边复制的过程,复制需要模板、原料、能量和酶等基本条件。DNA分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证了复制能够准确地进行。23. (56页资料分析)人类基因组计划测定的是24条染色体(22条常+XY)上的碱基序列。24. (56页资料分析讨论)基因的遗传效应是指基因能够复制、传递和表达性状的过程。25. (P60“自我检测·思维拓展”)两生物亲缘关系远近的判断DNA分子杂交技术可以用来比较不同种生物DNA分子的差异。当两种生物的DNA分子的单链具有互补的碱基序列时,互补的碱基序列就会结合在一起,形成杂合双链区;在没有互补碱基序列的部位,仍然是两条游离的单链(如图)。形成杂合双链区的部位越多,说明这两种生物的亲缘关系越近,这是为什么?形成杂合双链区的部位越多,DNA碱基序列的一致性越高,说明在生物进化的过程中,DNA碱基序列发生的变化越小,因此亲缘关系越近。26. (66页图45)tRNA中含有碱基对并有氢键另外-0H部位是结合氨基酸的部位,与氨基酸的NH,中的H结合。27. (67页)一个mRNA分子上结合多个核糖体,同时合成多条肽链,由图中信息可推出核糖体在mRNA上的移动方向。28. (67拓展题)密码的简并对生物体生存发展的意义:在一定程度上能防止由于碱基改变而导致的遗传信息的改变。29. (69页)豌豆圆粒和皱粒的机理:皱粒豌豆的DNA中插入了一段外来DNA序列,打乱了编码淀粉分支酶的基因,导致淀粉分支酶不能合成,而淀粉分支酶的缺乏又导致细胞内淀粉含量降低,游离蔗糖的含量升高。淀粉能吸水膨胀,蔗糖却不能。当豌豆成熟时,淀粉含量高的豌豆能有效地保留水分,显得圆圆胖胖,而淀粉含量低的豌豆由于失水而显得皱缩。但是皱粒豌豆的蔗糖含量高,味道更甜美。(原理:基因突变)30. (P69“资料分析”)疯牛病1982年,科学家发现一种结构异常的蛋白质可在脑细胞内大量“增殖”引起疾病。这种因错误折叠而形成的结构异常的蛋白质,可能促使与其具有相同氨基酸序列的蛋白质发生同样的折叠错误,从而导致大量结构异常的蛋白质的形成。31. (70页)囊性纤维病从分子水平分析机理:编码一个跨膜蛋白(CFTR蛋白)的基因缺失了3个碱基,导致CFTR蛋白在第508位缺少苯丙氨酸,进而影响了CFTR蛋白的结构,使CFTR 转运氣离子的功能异常,导致患者支气管中黏液增多,管腔受阻,细菌在肺部大量生长繁殖,最终使肺功能严重受损。32. (P70“细胞质基因”)细胞质基因与母系遗传线粒体和叶绿体中的DNA,都能够进行半自主自我复制,并通过转录和翻译控制某些蛋白质的合成。为了与细胞核的基因相区别,将线粒体和叶绿体中的基因称作细胞质基因。对人的线粒体DNA的研究表明,线粒体DNA的缺陷与数十种人类遗传病有关。这些疾病很多是与脑部和肌肉有关的。例如,线粒体肌病和神经性肌肉衰弱、运动失调及眼视网膜炎等。这些遗传病都只能通过母亲遗传给后代。【思考】线粒体基因控制的性状遗传实验中,正交和反交的结果相同吗?为什么?线粒体基因控制的性状遗传,不论正交还是反交,子一代总是表现为母本性状。因为受精卵中的细胞质(线粒体)基因几乎全部来自卵细胞(母方)。33. (P71“拓展题”)果蝇红眼的形成形成果蝇红眼的直接原因是红色色素的形成,而红色色素的形成需要经历一系列生化反应,每一个反应所涉及的酶都与相应的基因有关,因此,红眼的形成实际上是多个基因协同作用的结果。但是,科学家只将其中一个因突变而导致红眼不能形成的基因命名为红眼基因。请你根据上述事实,分析红眼的形成与红眼基因的关系。【提示】红眼基因正常是形成红眼的必要而非充分条件。红眼基因正常,并且其他涉及红眼形成的基因也正常时,果蝇的红眼才能形成;如果红眼基因不正常,即使所有其他涉及红眼形成的基因都正常,果蝇的红眼也不能形成。34. (78页知识迁移)抗生素可用于治疗因细菌感染而引起的疾病的原因:核糖体、tRNA 和mRNA的结合都是蛋白质的合成所不可缺少的。抗生素通过干扰细菌核糖体的形成,或阻止tRNA与mRNA的结合,来干扰细菌蛋白质的合成,抑制细菌的生长。35. (81页)DNA分子中发生碱基对的替换、增添、缺失,而引起基因结构的改变,叫基因突变(DNA中碱基对的改变丰基因突变;必须要引起基因结构的改变才基因突变。即DNA分子中非基因片段发生突变不叫基因突变)。36. (81页)基因突变若发生在配子中,将遵循遗传规律传递给后代。若发生在体细胞中,一般不能遗传。但有些植物的体细胞发生基因突变,可通过无性繁殖传递。37. (82页批判性思维)对于生物个体而言,自然突变的频率是很低的,且大多数突变是有害的,为什么仍然能为生物进化提供原材料?一个物种由许多个体组成,就整个物种来看,产生的突变还是很多的,其中有的突变是有利突变,对生物的进化有重要意义。因此,基因突变能够为生物进化提供原始材料。38. (82页)基因突变的随机性表现在基因突变可以发生在生物个体发育的任何时期;可以发生在细胞内不同的DNA分子上;同一DNA分子的不同部位。39. (84页课后题整合)基因重组能够产生多种基因型,但不可以产生新的基因。同无性生殖相比,有性生殖产生的后代具有更大的变异性,其根本原因是产生新的基因组合机会多。40. (P84“拓展题”)等位基因显隐性关系的相对性具有一个镰刀型细胞贫血症突变基因的个体(即杂合子)并不表现镰刀型细胞贫血症的症状,因为该个体能同时合成正常和异常的血红蛋白,并对疟疾具有较强的抵抗力,镰刀型细胞贫血症主要流行于非洲疟疾猖獗的地区,请根据这一事实探讨突变基因对当地人生存的影响。【提示】镰刀型细胞贫血症患者对疟疾具有较强的抵抗力,这说明在易患疟疾的地区,镰刀型细胞的突变具有有利于当地人生存的一面。虽然这个突变体的纯合子对生存不利,但其杂合子却有利于当地人的生存。41. (8586页图)果蝇的缺刻翅是因染色体中某一片段缺失引起,其棒状眼是因染色体中某一片段增加引起,染色体易位发生在非同源染色体之间。42. (86页)染色体结构变异的概念:染色体结构的改变,会使排列在染色体上的基因数目或排列顺序发生改变,从而导致性状发生改变(一般不会改变基因种类)。43. (88页实验)经低温处理过的植物根尖,放入卡诺氏液中浸泡,以固定细胞形态,再用体积分数为95