金太阳2023-2024五岳联盟高二下学期3月份月考数学试卷含答案.pdf
-
资源ID:97271873
资源大小:2.75MB
全文页数:9页
- 资源格式: PDF
下载积分:9.99金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
金太阳2023-2024五岳联盟高二下学期3月份月考数学试卷含答案.pdf
金太阳2023-2024五岳联盟高二下学期3月份月考数学试卷答案24-37B?高二数学?参考答案?第?页?共?页?学年高二?下?第一次月考数学参考答案?该质点在?这段时间内的平均速度为?因为?所以?则?是周期为?的数列?所以?由题可知?解得?故?的方程为?因为?所以?不是递增数列?错误?由?得?所以?不是递增数列?错误?由题意得?所以?是递增数列?正确?因为?单调递减?所以?是递减数列?错误?则向量?在向量?上的投影向量为?设?的公比为?则由?得?即?则?由题意得?则?的周长为?当直线?经过点?时?的周长最大?此时?且?则可设?得?故?的离心率为?在?上恒成立等价于?在?上恒成立?等价于?在?上恒成立?令?则?令?则?可得?在?上单调递减?在?上单调递增?因为?所以?恒成立?所以?在?上单调递增?则?在?上恒成立?即?在?上恒成立?令?则?所以?在?上单调递增?在?#QQABRY6AogAoAJBAAQhCEQWQCAOQkBACCAoOgBAMMAAA?高二数学?参考答案?第?页?共?页?上单调递减?故?因为?过点?所以?即?正确?不正确?设?联立方程组?整理得?则?所以?正确?槡?不正确?由?得?因为?有极值点?所以方程?有两个不相等的实数解?且至少有一个为正数?则?不正确?若?则?方程?有两个不相等的实数解?且?则?或?有且仅有一个极值点?正确?若?有两个极值点?则?且?则?正确?若?是?的极大值点?则?是方程?较小的实数解?由?得方程?较大的实数解为?正确?当?时?得?正确?将?两边同时除以?得?所以?不是等差数列?错误?由?得?则?得?即?则?正确?由?得?所以?是首项为?公比为?的等比数列?则?的前?项和?所以?正确?因为?为等差数列?所以?解得?因为?所以?则?解得?则?则?当?#QQABRY6AogAoAJBAAQhCEQWQCAOQkBACCAoOgBAMMA?高二数学?参考答案?第?页?共?页?时?单调递减?当?时?单调递增?因为?所以?的解集为?记底面圆的圆心为?则?所以?设?到?的最小距离为?因为圆锥的轴截面是边长为?的正三角形?所以槡?解得?槡?则?解?因为?为?与?的交点?所以?分又?所以?分因为?平面?平面?平面?平面?分所以?则?分从而?即?分?以?为坐标原点?所在直线分别为?轴?轴?轴建立如图所示的空间直角坐标系?不妨令?则?分所以?分设平面?的法向量为?由?得?分令?得?分由图可知?平面?的一个法向量为?分所以?槡?分故二面角?的正弦值为?槡?槡?槡?分?解?因为?所以?分又?的图象在点?处的切线与直线?平行?所以?则?分当?时?单调递减?当?时?单调递增?分由?得?分故?在?上的最大值为?最小值为?分#QQABRY6AogAoAJBAAQhCEQWQCAOQkBACCAoOgBAMMA?高二数学?参考答案?第?页?共?页?设切点为?则切线的斜率?所以切线方程为?分因为切线经过点?所以?整理得?即?解得?分故切线方程为?即?分?解?当?时?分当?时?由?得?分则?则?分因为?也符合上式?所以?分?证明?由?可得?分则?分?解?因为?所以?分令?则?分当?即?时?则?在?上恒成立?所以?单调递增?分当?即?时?令?解得?则当?时?单调递减?当?时?单调递增?分综上?当?时?的单调递增区间为?无单调递减区间?当?时?的单调递增区间为?单调递减区间为?分?证明?因为?所以?分则欲证?只需证?分只需证?即证?分令?则?在?上恒成立?则?在?上单调递增?分故当?时?从而?则结论成立?分?解?因为双曲线?经过点?所以?解得?分#QQABRY6AogAoAJBAAQhCEQWQCAOQkBACCAoOgBAMMAAA?高二数学?参考答案?第?页?共?页?所以?的离心率?槡?槡?分?易知?设?因为?的重心为?所以?分解得?分因为?所以?即?分因为点?异于?两点?所以?且?所以?的轨迹不含?两点?分故?槡?槡?槡?当且仅当?时?等号成立?即?的最小值为槡?分?因为?为?的垂心?所以?设?当直线?或?的斜率为?时?点?的坐标为?或?点?与点?重合?分当直线?或?的斜率不为?时?直线?与?的斜率存在?则?分由?知?则?则?分因为?所以?分?则?得?分则?分因为?都在曲线?上?所以动点?的轨迹方程为?挖去?这三点?分#QQABRY6AogAoAJBAAQhCEQWQCAOQkBACCAoOgBAM