欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江苏省镇江市2022-2023学年高一上学期期末数学试题(含解析).docx

    • 资源ID:97273862       资源大小:1.40MB        全文页数:27页
    • 资源格式: DOCX        下载积分:9.99金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.99金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江苏省镇江市2022-2023学年高一上学期期末数学试题(含解析).docx

    2022-2023学年江苏省镇江市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则( )A. B. C. D. 2. 命题“对任意,都有”的否定为( )A. 存在,使得B. 不存在,使得C. 存在,使得D. 存在,使得3. 幂函数为偶函数,且在上为减函数的是( )A. B. C. D. 4. 已知方程的解在内,则( )A. 0B. 1C. 2D. 35. 中国折扇有着深厚的文化底蕴.用黄金分割比例设计一把富有美感的纸扇,如图所示,在设计折扇的圆心角时,可把折扇考虑为从一圆形(半径为)分割出来的扇形,使扇形的面积与圆的面积的乘积等于剩余面积的平方.则扇形的圆心角为( )A. B. C. D. 6. 若,则a,b,c的大小关系为( )A. B. C. D. 7. 函数的图象大致是( )A B. C D. 8. 已知函数,正实数a,b满足,则的最小值为( )A. 2B. 4C. 6D. 8二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( )A. 若,则B. 若,则C. 若,则D. 若,则10. 已知,则下列等式正确的是( )A B. C. D. 11. 已知函数,下列结论正确的是( )A 函数恒满足B. 直线为函数图象的一条对称轴C. 点是函数图象的一个对称中心D. 函数在上为增函数12. 已知函数,则下列结论正确的有( )A. 若为锐角,则B. C. 方程有且只有一个根D. 方程的解都在区间内三、填空题:本题共4小题,每小题5分,共20分.13. _.14. 已知函数对任意实数恒成立,则实数的范围为_.15. 已知某种果蔬的有效保鲜时间(单位:小时)与储藏温度(单位:)近似满足函数关系(a,b为常数,e为自然对数底数),若该果蔬在7的保鲜时间为216小时,在28的有效保鲜时间为8小时,那么在14时,该果蔬的有效保鲜时间大约为_小时.16. 已知函数,则的值域为_函数图象的对称中心为_.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围.18. 已知,.(1)求的值;(2)若角的终边与角关于轴对称,求的值.19. 用“五点法”作函数在一个周期内的图象时,列表计算了部分数据:0020d0(1)请根据上表数据,求出函数的表达式并写出表内实数a,b,c,d的值;(2)请在给定的坐标系内,作出函数在一个周期内的图象;(3)若存在,使得成立,求实数的取值范围.20. 已知函数(且).(1)求函数的奇偶性;(2)若关于方程有实数解,求实数的取值范围.21. 某企业参加国际商品展览会,向主办方申请了平方米的矩形展位,展位由展示区(图中阴影部分)和过道(图中空白部分)两部分组成,其中展示区左右两侧过道宽度都为米,前方过道宽度为米.后期将对展位进行装修,其中展示区的装修费为元/平方米,过道的装修费为元/平方米.记展位的一条边长为米,整个展位的装修总费用为元.(1)请写出装修总费用关于边长的表达式;(2)如何设计展位的边长使得装修总费用最低?并求出最低费用.22. 已知函数,.(1)判断并证明在上的单调性;(2)当时,都有成立,求实数的取值范围;(3)若方程在上有个实数解,求实数的取值范围.2022-2023学年江苏省镇江市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则( )A. B. C. D. 【答案】B【解析】【分析】先求出,进而求出.【详解】,故故选:B2. 命题“对任意,都有”的否定为( )A. 存在,使得B. 不存在,使得C. 存在,使得D. 存在,使得【答案】D【解析】【分析】利用全称量词命题的否定是特称命题可得出结论.【详解】由全称量词命题的否定可知,原命题的否定为“存在,使得”.故选:D.3. 幂函数为偶函数,且在上为减函数是( )A. B. C. D. 【答案】A【解析】【分析】根据函数性质逐项分析判断.【详解】对A:,则,故为偶函数,且在上为减函数,A正确;对B:的定义域为,即定义域不关于原点对称,故为非奇非偶函数,B错误;对C:,故为偶函数,且在上为增函数,C正确;对D:,故为奇函数,D错误.故选:A.4. 已知方程解在内,则( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】根据函数单调性结合零点存在性定理分析运算.【详解】构建,则在定义域内单调递增,故在定义域内至多有一个零点,仅在内存在零点,即方程的解仅在内,故.故选:B.5. 中国折扇有着深厚的文化底蕴.用黄金分割比例设计一把富有美感的纸扇,如图所示,在设计折扇的圆心角时,可把折扇考虑为从一圆形(半径为)分割出来的扇形,使扇形的面积与圆的面积的乘积等于剩余面积的平方.则扇形的圆心角为( )A. B. C. D. 【答案】C【解析】【分析】计算出、,根据已知条件可得出关于的方程,结合可求得的值.【详解】由题意可知,则且,即,整理可得,由题意可知,解得.故选:C.6. 若,则a,b,c的大小关系为( )A. B. C. D. 【答案】B【解析】【分析】根据指数函数以及对数函数的单调性可得,根据三角函数的有界性可判断,即可求解.【详解】,所以,故选:B7. 函数的图象大致是( )A. B. C. D. 【答案】A【解析】【分析】分析函数的奇偶性及其在上的增长速度,结合排除法可得出合适的选项.【详解】函数的定义域为,当时,当时,故对任意的,所以,函数为偶函数,排除BD选项;当时,则函数在的增长速度快于函数的增长速度,排除C选项.故选:A.8. 已知函数,正实数a,b满足,则的最小值为( )A. 2B. 4C. 6D. 8【答案】B【解析】【分析】先证明函数为奇函数,由可得,再利用基本不等式求的最小值.【详解】,函数定义域为R,关于原点对称, 所以为奇函数,有,由解析式可以看出单调递增,由,得,即,为正实数,则有,当且仅当即时等号成立,则有,所以,得,当且仅当时等号成立,则的最小值为4.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】BC【解析】【分析】对A、B、D:根据不等式的性质结合作差法分析判断;对C:根据指数函数单调性分析判断.【详解】对A:当时,若,则;当时,则,A为假命题;对B:,若,则,即,B为真命题;对C:在定义域内单调递增,若,则,C为真命题;对D:,若,则,即,当时,则;当时,则;D为假命题.故选:BC.10. 已知,则下列等式正确的是( )A. B. C. D. 【答案】ABD【解析】【分析】利用同角三角函数的平方关系可判断AB选项;求出、的值,可判断CD选项的正误.【详解】因为,则.对于A选项,可得,A对;对于B选项,由A选项可知,则,所以,则,B对;对于C选项,可得,则,C错;对于D选项,D对.故选:ABD.11. 已知函数,下列结论正确的是( )A. 函数恒满足B. 直线为函数图象的一条对称轴C. 点是函数图象的一个对称中心D. 函数在上为增函数【答案】AC【解析】【分析】根据诱导公式可判断A选项;利用正切型函数的对称性可判断BC选项;利用正切型函数的单调性可判断D选项.【详解】对于A选项, , A正确;对于B选项,函数无对称轴,B错;对于C选项,由可得,当时,可得,所以,点是函数图象的一个对称中心,C对;对于D选项,当时,所以,函数在上不单调,D错.故选:AC.12. 已知函数,则下列结论正确的有( )A. 若为锐角,则B. C. 方程有且只有一个根D. 方程的解都在区间内【答案】BCD【解析】【分析】对A:利用放缩可得;对B:利用做差法分析判断;对C:根据函数的单调性分析判断;对D:分类讨论,结合零点存在性定理分析判断.【详解】对A:若为锐角,则,可得,故,A错误;对B:当时,故,即,B正确;对C:,且在上单调递增,解得,C正确;对D:构建,则在上连续不断,则有:当时,则,故,可得在内无零点;当时,则,故,可得在内无零点;当时,则,故在区间内存在零点;综上所述:只在区间内存在零点,即方程的解都在区间内,D正确.故选:BCD.【点睛】方法点睛:判断函数零点的方法(1)直接求零点:令f(x)0,则方程解的个数即为零点的个数(2)零点存在性定理:利用该定理不仅要求函数在a,b上是连续曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点三、填空题:本题共4小题,每小题5分,共20分.13. _.【答案】#【解析】【分析】利用对数的运算性质计算可得所求代数式的值.【详解】原式.故答案:.14. 已知函数对任意实数恒成立,则实数的范围为_.【答案】【解析】【分析】对任意实数恒成立,则,讨论与0的大小可得答案.【详解】因对任意实数恒成立,则.当时,符合题意;当时,;当时,.综上,.故答案为:15. 已知某种果蔬的有效保鲜时间(单位:小时)与储藏温度(单位:)近似满足函数关系(a,b为常数,e为自然对数底数),若该果蔬在7的保鲜时间为216小时,在28的有效保鲜时间为8小时,那么在14时,该果蔬的有效保鲜时间大约为_小时.【答案】72【解析】【分析】根据题意列出方程组,求出,确定函数解析式,再代入求值即可.【详解】由题意得:,÷得:,故,则,故故当时,.故答案为:7216. 已知函数,则的值域为_函数图象的对称中心为_.【答案】 . . 【解析】【分析】将函数的解析式变形为,结合不等式的基本性质可求得的值域;利用函数对称性的定义可求得函数的对称中心的坐标.【详解】因为,则,所以,所以,函数的值域为,因为,则,因此,函数图象的对称中心为.故答案为:;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围.【答案】(1) (2)【解析】【分析】(1)分别解出集合中的不等式,得到两个集合,再取交集;(2)依题意有有,列方程组求实数的取值范围.【小问1详解】,若,.【小问2详解】因为“”是“”的充分不必要条件,有A是B的真子集可得等号不同时取,解得,所以实数的取值范围为18. 已知,.(1)求的值;(2)若角的终边与角关于轴对称,求的值.【答案】(1) (2)【解析】【分析】(1)利用平方关系式求出和,再根据商数关系式求出;(2)根据角的终边与角关于轴对称,推出,再根据诱导公式化简所求式子,代入可求出结果.【小问1详解】因为,所以,由,得,得,得,得或,当时,由得,不符合题意;当时,由得,所以.小问2详解】若角的终边与角关于轴对称,则,即,所以,.19. 用“五点法”作函数在一个周期内的图象时,列表计算了部分数据:0020d0(1)请根据上表数据,求出函数的表达式并写出表内实数a,b,c,d的值;(2)请在给定的坐标系内,作出函数在一个周期内的图象;(3)若存在,使得成立,求实数的取值范围.【答案】(1), (2)图象见详解 (3)【解析】【分析】(1)根据表中数据结合正弦函数性质运算求解;(2)根据题意结合五点作图法作图;(3)以为整体,结合正弦函数求的值域,再结合存在性问题分析求解.【小问1详解】由题意可得:,即,设函数的最小正周期为,则,即,可得,解得,故,.【小问2详解】补全表格得:00200则函数在一个周期内的图象如图所示:【小问3详解】,则,可得,若存在,使得成立,则,即,故实数的取值范围.20. 已知函数(且).(1)求函数的奇偶性;(2)若关于的方程有实数解,求实数的取值范围.【答案】(1)奇函数 (2)【解析】【分析】(1)求出函数的定义域,利用函数奇偶性的定义可得出结论;(2)由可得出,求出函数在上的值域,可得出实数的取值范围.【小问1详解】解:对于函数,有,则,解得,所以函数的定义域为,故函数为奇函数.【小问2详解】解:由可得,则,令,其中,因为函数、在上为增函数,故函数在上为增函数,当时,因此,实数的取值范围是.21. 某企业参加国际商品展览会,向主办方申请了平方米的矩形展位,展位由展示区(图中阴影部分)和过道(图中空白部分)两部分组成,其中展示区左右两侧过道宽度都为米,前方过道宽度为米.后期将对展位进行装修,其中展示区的装修费为元/平方米,过道的装修费为元/平方米.记展位的一条边长为米,整个展位的装修总费用为元.(1)请写出装修总费用关于边长的表达式;(2)如何设计展位的边长使得装修总费用最低?并求出最低费用.【答案】(1),其中 (2)当展位区域是边长为米的矩形区域时,装修费用最低为元【解析】【分析】(1)设展位靠墙的一边边长为米,则展示区靠墙的一边的边长为米,计算出展示区的面积,即可得出装修总费用关于边长的表达式;(2)利用基本不等式可求得的最小值,利用等号成立的条件可得出结论.【小问1详解】解:设展位靠墙的一边边长为米,则展示区靠墙的一边的边长为米,展示区另一边边长为米,由可得,所以,即,其中.【小问2详解】解:由基本不等式可得,当且仅当时,等号成立,因此,当展位区域是边长为米的矩形区域时,装修费用最小为元.22. 已知函数,.(1)判断并证明在上的单调性;(2)当时,都有成立,求实数的取值范围;(3)若方程在上有个实数解,求实数的取值范围.【答案】(1)函数在上为增函数,证明见解析 (2) (3)【解析】【分析】(1)判断出函数在上为增函数,然后任取、且,作差,因式分解后判断的符号,结合函数单调性的定义可证得结论成立;(2)令,由可得出,利用对勾函数的单调性可求得实数的取值范围;(3)令,令,分析可知函数在上有两个不等的零点,根据二次函数的零点分布可得出关于实数的不等式组,即可解得实数的取值范围.【小问1详解】证明:任取、且,则,所以,所以,函数在上为增函数.【小问2详解】解:当时,令,则,则,由可得,因为函数在上单调递增,所以,所以,实数的取值范围是.【小问3详解】解:对任意的,所以,函数为偶函数,由(1)可知,函数在上为增函数,则该函数在上为减函数,令,当时,则,由可得,令,则函数在上有两个不等的零点,所以,解得.因此,实数的取值范围是.

    注意事项

    本文(江苏省镇江市2022-2023学年高一上学期期末数学试题(含解析).docx)为本站会员(学****享)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开