数学一 函数与导数、不等式 第2讲 基本初等函数、函数与方程及函数的应用 文 .ppt
-
资源ID:97289701
资源大小:2.37MB
全文页数:33页
- 资源格式: PPT
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
数学一 函数与导数、不等式 第2讲 基本初等函数、函数与方程及函数的应用 文 .ppt
第第2讲基本初等函数、函数与方程及函数讲基本初等函数、函数与方程及函数的应用的应用 高考定位1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;3.能利用函数解决简单的实际问题.真真 题题 感感 悟悟1.(2017全国卷)设x,y,z为正数,且2x3y5z,则()A.2x3y5z B.5z2x3yC.3y5z2x D.3y2x0,a1)与对数函数ylogax(a0,a1)的图象和性质,分0a1两种情况,当a1时,两函数在定义域内都为增函数,当0a0,且a1)的值域为y|y1,则函数yloga|x|的图象大致是()(2)(2017山东卷)若函数exf(x)(e2.718 28是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是()A.f(x)2x B.f(x)x2C.f(x)3x D.f(x)cos x 解析(1)由于ya|x|的值域为y|y1,a1,则ylogax在(0,)上是增函数,又函数yloga|x|的图象关于y轴对称.因此yloga|x|的图象应大致为选项B.(2)若f(x)具有性质M,则exf(x)exf(x)f(x)0在f(x)的定义域上恒成立,即f(x)f(x)0在f(x)的定义域上恒成立.对于选项A,f(x)f(x)2x2xln 22x(1ln 2)0,符合题意.经验证,选项B,C,D均不符合题意.答案(1)B(2)A 探究提高1.指数函数、对数函数的图象和性质受底数a的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)ln(x23x2)的单调区间,只考虑tx23x2与函数yln t的单调性,忽视t0的限制条件.【训练1】(1)(2017长沙一模)函数yln|x|x2的图象大致为()热点二函数的零点与方程命题角度1确定函数零点个数或其存在范围答案(1)C(2)2探究提高1.函数零点(即方程的根)的确定问题,常见的类型有:(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定.2.判断函数零点个数的主要方法:(1)解方程f(x)0,直接求零点;(2)利用零点存在定理;(3)数形结合法:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个能画出的函数图象交点问题.答案B探究提高1.本题求解的关键是利用函数的性质,转化为一元二次方程x2xk0在区间(1,1)内有两个零点,进而利用数形结合思想转化为不等式组求解.2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.解析当x0时,由f(x)ln x0,得x1.因为函数f(x)有两个不同的零点,则当x0时,函数f(x)2xa有一个零点,令f(x)0得a2x,因为02x201,所以00,且a1)的取值影响,解题时一定要注意讨论,并注意两类函数的定义域与值域所隐含条件的制约.2.(1)忽略概念致误:函数的零点不是一个“点”,而是函数图象与x轴交点的横坐标.(2)零点存在性定理注意两点:满足条件的零点可能不唯一;不满足条件时,也可能有零点.3.利用函数的零点求参数范围的主要方法:(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.4.构建函数模型解决实际问题的常见类型与求解方法: