数学四 立体几何 第2讲 空间中位置关系的判断与证明问题 文 .ppt
-
资源ID:97290996
资源大小:2.56MB
全文页数:33页
- 资源格式: PPT
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
数学四 立体几何 第2讲 空间中位置关系的判断与证明问题 文 .ppt
第第2讲空间中位置关系的判断与证明问题讲空间中位置关系的判断与证明问题高考定位1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择、填空题的形式,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并常与几何体的表面积、体积相渗透.真真 题题 感感 悟悟1.(2017全国卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析法一对于选项B,如图(1)所示,连接CD,因为ABCD,M,Q分别是所在棱的中点,所以MQCD,所以ABMQ,又AB平面MNQ,MQ平面MNQ,所以AB平面MNQ.同理可证选项C,D中均有AB平面MNQ.因此A项不正确.图(1)图(2)法二对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQAB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行.A项不正确.答案A2.(2016全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有_(填写所有正确命题的编号).解析当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.答案 解析如图所示,设平面CB1D1平面ABCDm1,因为平面CB1D1,所以m1m,答案A4.(2017全国卷)如图,在四棱锥PABCD中,ABCD,且BAPCDP90.(1)证明BAPCDP90,ABPA,CDPD.ABCD,ABPD.又PAPDP,PA,PD平面PAD,AB平面PAD.AB平面PAB,平面PAB平面PAD.(2)解取AD的中点E,连接PE.PAPD,PEAD.由(1)知,AB平面PAD,故ABPE,ABAD,可得PE平面ABCD.考考 点点 整整 合合1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a,b,aba.(2)线面平行的性质定理:a,a,bab.(3)面面平行的判定定理:a,b,abP,a,b.(4)面面平行的性质定理:,a,bab.(1)线面垂直的判定定理:m,n,mnP,lm,lnl.(2)线面垂直的性质定理:a,bab.(3)面面垂直的判定定理:a,a.(4)面面垂直的性质定理:,l,a,ala.2.直线、平面垂直的判定及其性质 热点一空间点、线、面位置关系的判定【例1】(2017成都诊断)已知m,n是空间中两条不同的直线,是两个不同的平面,且m,n.有下列命题:若,则mn;若,则m;若l,且ml,nl,则;若l,且ml,mn,则.其中真命题的个数是()A.0 B.1 C.2 D.3解析若,则mn或m,n异面,不正确;若,根据平面与平面平行的性质,可得m,正确;若l,且ml,nl,则与不一定垂直,不正确;若l,且ml,mn,l与n不一定相交,不能推出,不正确.答案B探究提高判断与空间位置关系有关的命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.【训练1】(2017广东省际名校联考)已知,为平面,a,b,c为直线,下列命题正确的是()A.a,若ba,则bB.,c,bc,则bC.ab,bc,则acD.abA,a,b,a,b,则 解析选项A中,b或b,不正确.B中b与可能斜交,B错误.C中ac,a与c异面,或a与c相交,C错误.利用面面平行的判定定理,易知D正确.答案D热点二空间平行、垂直关系的证明【例2】如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别是CD和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明(1)平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,PA平面PAD,PA底面ABCD.(2)ABCD,CD2AB,E为CD的中点,ABDE,且ABDE.四边形ABED为平行四边形.BEAD.又BE平面PAD,AD平面PAD,BE平面PAD.(3)ABAD,而且ABED为平行四边形.BECD,ADCD,由(1)知PA底面ABCD.PACD,且PAADA,PA,AD平面PAD,CD平面PAD,又PD平面PAD,CDPD.E和F分别是CD和PC的中点,PDEF.CDEF,又BECD且EFBEE,CD平面BEF,又CD平面PCD,平面BEF平面PCD.【迁移探究1】在本例条件下,证明平面BEF平面ABCD.【迁移探究2】在本例条件下,若ABBC,求证:BE平面PAC.证明连接AC,ACBEO.ABCD,CD2AB,且E为CD的中点.AB綉CE.又ABBC,四边形ABCE为菱形,BEAC.又PA平面ABCD,又BE平面ABCD,PABE,又PAACA,PA,AC平面PAC,BE平面PAC.探究提高垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.热点三平面图形中的折叠问题【例3】(2016全国卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AECF,EF交BD于点H,将DEF沿EF折到DEF的位置.探究提高1.解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.一般地翻折后还在同一个平面上的图形的性质不发生变化,不在同一个平面上的图形的性质发生变化.2.在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形,善于将折叠后的量放在原平面图形中进行分析求解.1.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.2.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:利用等腰三角形底边中线即高线的性质;勾股定理;线面垂直的性质:即要证两线垂直,只 需 证 明 一 线 垂 直 于 另 一 线 所 在 的 平 面 即 可,l,ala.3.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.