长阳县数学 第一章 三角函数 1.2 任意角三角函数 新人教A版必修4.ppt
-
资源ID:97418770
资源大小:724.50KB
全文页数:19页
- 资源格式: PPT
下载积分:5金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
长阳县数学 第一章 三角函数 1.2 任意角三角函数 新人教A版必修4.ppt
在初中我们是如何定义锐角三角函数的?在初中我们是如何定义锐角三角函数的?复习回顾OabMPc1.2.1任意角的三角函数任意角的三角函数OabMP yx 1.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?新课 导入 yx 1.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?新课 导入o如果改变点在终边上的位置,这三个比值会改变吗?如果改变点在终边上的位置,这三个比值会改变吗?诱思 探究MOyxP(a,b)2.用单位圆定义任意角的三角函数用单位圆定义任意角的三角函数xyo的终边设设是一个任意角,它的终边是一个任意角,它的终边与单位圆交于一点与单位圆交于一点,那么那么()()叫做叫做的正切,记作的正切,记作,即即()()()()叫做叫做,即,即的余弦,记作的余弦,记作叫做叫做的正弦,记作的正弦,记作,即,即正弦、余弦、正切都是以正弦、余弦、正切都是以角角为自变量,以单位圆上的点的为自变量,以单位圆上的点的坐坐或坐标的比值或坐标的比值为函数值的函数,我们将它们统称为为函数值的函数,我们将它们统称为三角函数三角函数.标标xyo的终边说说 明明(1)正弦就是交点的纵坐标,余弦就是交点)正弦就是交点的纵坐标,余弦就是交点横坐标的比值横坐标的比值.的横坐标,的横坐标,正切就是正切就是 交点的纵坐标与交点的纵坐标与(3)由于角的集合与实数集之间可以建立一一对应关系,)由于角的集合与实数集之间可以建立一一对应关系,三角函数可以看成是自变量为实数的函数三角函数可以看成是自变量为实数的函数.(2)正弦、余弦总有意义正弦、余弦总有意义.当当 的终边在的终边在 横坐标等于横坐标等于0,无意义,此时无意义,此时 轴上时,点轴上时,点P 的的探究:探究:三角函数定义域1.三角函数的定义域三角函数的定义域例例1 求求 的正弦、余弦和正切值的正弦、余弦和正切值.解:在直角坐标系中,作解:在直角坐标系中,作,易知,易知 的终边与单位圆的交点坐标为的终边与单位圆的交点坐标为 所以所以,实例 剖析例例2 已知角已知角 的终边经过点的终边经过点 ,求角,求角 的正弦、余弦的正弦、余弦和正切值和正切值.解解:由已知可得由已知可得设角设角 的终边与单位圆交于的终边与单位圆交于 ,分别过点分别过点 、作作 轴的垂线轴的垂线 、于是,于是,设角设角 是一个任意角,是一个任意角,是终边上的任意一点,是终边上的任意一点,点点 与原点的距离与原点的距离那么那么 叫做叫做 的正弦,即的正弦,即 叫做叫做 的余弦,即的余弦,即 叫做叫做 的正弦,即的正弦,即 任意角任意角 的三角函数值仅与的三角函数值仅与 有关,而与点有关,而与点 在角的终在角的终边上的位置无关边上的位置无关.定义推广:定义推广:于是于是,巩固 提高练习练习 已知角已知角 的终边过点的终边过点 ,求求 的三个三角函数值的三个三角函数值.解:由已知可得:解:由已知可得:()()()()()()()()()()()()+-+-+-2.三角函数值在各象限的符号三角函数值在各象限的符号探究:探究:例例3 求证:当且仅当下列不等式组成立时,求证:当且仅当下列不等式组成立时,角角 为第三象限角为第三象限角.证明:证明:因为因为式式 成立成立,所以所以 角的终边可能位于第三角的终边可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 轴的非正半轴上;轴的非正半轴上;又因为又因为式式 成立,所以角成立,所以角 的终边可能位于的终边可能位于第一或第三象限第一或第三象限.因为因为式都成立,所以角式都成立,所以角 的终边只能位于第三象限的终边只能位于第三象限.于是角于是角 为第三象限角为第三象限角.反过来请同学们自己证明反过来请同学们自己证明.如果两个角的终边相同,那么这两个角的如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?同一三角函数值有何关系?终边相同的角的同一三角函数值相等(公式一)终边相同的角的同一三角函数值相等(公式一)其中其中 利用公式一,可以把求任意角的三角函数值,转化为利用公式一,可以把求任意角的三角函数值,转化为求求 角的三角函数值角的三角函数值.例例4 确定下列三角函数值的符号:确定下列三角函数值的符号:(1)(2)(3)解:解:(1)因为)因为 是第三象限角,所以是第三象限角,所以 ;(2)因为)因为 =,而而 是第一象限角,所以是第一象限角,所以 ;练习练习 确定下列三角函数值的符号确定下列三角函数值的符号 (3)因为)因为 是第四象限角,所以是第四象限角,所以 .例例5 求下列三角函数值:求下列三角函数值:(1)(2)解:(解:(1)练习练习 求下列三角函数值求下列三角函数值 (2)小结:小结:(1)任意角的三角函数的定义;)任意角的三角函数的定义;(2)三角函数的定义域与三角函数值在各象限的符号;)三角函数的定义域与三角函数值在各象限的符号;(3)诱导诱导公式一及其应用;公式一及其应用;(4)体会定义过程中体现的数形结合的思想)体会定义过程中体现的数形结合的思想.