欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    九年级数学期末复习压轴题 .doc

    • 资源ID:97451260       资源大小:357.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    九年级数学期末复习压轴题 .doc

    九年级数学期末复习-压轴题1如图,直线y=x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(1,0)(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题2如图,直线y=x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(1,0)(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标3如图,已知抛物线y=ax2+bx+3(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标4如图1,抛物线y=ax2+bx+6(a0)与x轴交于点A(2,0)和点B(6,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标5如图1,抛物线y=ax2+bx+6(a0)与x轴交于点A(2,0)和点B(6,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QBQC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标九年级数学期末复习-压轴题参考答案与试题解析1(2015乳山市一模)如图,直线y=x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(1,0)(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题【解答】解:(1)令x=0,则y=x+2=2;令y=0,则0=x+2,解得x=4,所以B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,把A、B的坐标代入得,解得该二次函数的关系式为y=x2+x+2;(3)如图2,过C点作CMEF于M,设E(a,a+2),F(a,a2+a+2)EF=a2+a+2(a+2)=a2+2a,(0a4),S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN=+a(a2+2a)+(4a)(a2+2a)=a2+4a+=(a2)2+,(0a4),a=2时,S四边形CDBF的最大值为;E(2,1);(4)存在,如图3,抛物线y=x2+x+2的对称轴x=,OD=,C(0,2),OC=2,在RTOCD中,由勾股定理得CD=,CDP是以CD为腰的等腰三角形,CP1=DP2=DP3=CD,如图所示,作CE对称轴于E,EP1=ED=2,DP1=4,P1(,4),P2(,),P3(,)2(2015曲靖一模)如图,直线y=x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(1,0)(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标【解答】解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,解得:,即该二次函数的关系式为y=x2+x+2;(3)y=x2+x+2,y=(x)2+,抛物线的对称轴是x=OD=C(0,2),OC=2在RtOCD中,由勾股定理,得CD=CDP是以CD为腰的等腰三角形,CP1=DP2=DP3=CD如图1所示,作CE对称轴于E,EP1=ED=2,DP1=4P1(,4),P2(,),P3(,);(4)当y=0时,0=x2+x+2x1=1,x2=4,B(4,0)直线BC的解析式为:y=x+2如图2,过点C作CMEF于M,设E(a,a+2),F(a,a2+a+2),EF=a2+a+2(a+2)=a2+2a(0a4)S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN,=+a(a2+2a)+(4a)(a2+2a),=a2+4a+(0a4)=(a2)2+a=2时,S四边形CDBF的面积最大=,E(2,1)3(2009十堰)如图,已知抛物线y=ax2+bx+3(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标【解答】解:(1)抛物线y=ax2+bx+3(a0)与x轴交于点A(1,0)和点B(3,0),解得:所求抛物线解析式为:y=x22x+3;(2)抛物线解析式为:y=x22x+3,其对称轴为x=1,设P点坐标为(1,a),当x=0时,y=3,C(0,3),M(1,0)当CP=PM时,(1)2+(3a)2=a2,解得a=,P点坐标为:P1(1,);当CM=PM时,(1)2+32=a2,解得a=±,P点坐标为:P2(1,)或P3(1,);当CM=CP时,由勾股定理得:(1)2+32=(1)2+(3a)2,解得a=6,P点坐标为:P4(1,6)综上所述存在符合条件的点P,其坐标为P(1,)或P(1,)或P(1,6)或P(1,);(3)过点E作EFx轴于点F,设E(a,a22a+3)(3a0)EF=a22a+3,BF=a+3,OF=aS四边形BOCE=BFEF+(OC+EF)OF=(a+3)(a22a+3)+(a22a+6)(a)=+当a=时,S四边形BOCE最大,且最大值为此时,点E坐标为(,)4(2016秋富顺县月考)如图1,抛物线y=ax2+bx+6(a0)与x轴交于点A(2,0)和点B(6,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足AC+QC最小时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标【解答】解:(1)把A(2,0)和B(6,0)代入y=ax2+bx+6得,解得,抛物线的解析式为y=x22x+6(2)如图1中,由题意C(0,6),M(2,0),CM=2,当P1C=CM时,可得P1(2,12),当MP2=MC时,P2(2,2),当MP3=MC时,P3(22)综上所述满足条件的点P坐标(2,12)或(2,2)或(2,2)(3)如图2中,连接BC交对称轴于Q,此时QA+QC最小B(6,0),C(0,6),直线BC的解析式为y=x+6,点Q(2,4)(4)如图3中,设E(m,m22m+6)连接EOS四边形BOCE=SBOE+SCOE=×6×(m22m+6)+×6×(m)=(m+3)2+,a=0,m=3时,四边形BOCE的面积最大,最大值为,此时点E(3,)5(2014秋江津区期中)如图1,抛物线y=ax2+bx+6(a0)与x轴交于点A(2,0)和点B(6,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,在对称轴上存在点P,使CMP为等腰三角形,请直接写出所有符合条件的点P的坐标;(3)设点Q是抛物线对称轴上的一个动点,当点Q满足|QBQC|最大时,求出Q点的坐标;(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE的面积的最大值,并求此时E点的坐标【解答】解:(1)由题知:,解得:,故所求抛物线解析式为:y=x22x+6;(2)抛物线解析式为:y=x22x+6,对称轴为x=2,设P点坐标为(2,t),当x=0时,y=6,C(0,6),M(2,0),CM2=(20)2+(06)2=40当CP=PM时,(2)2+(t6)2=t2,解得t=,P点坐标为:P1(2,);当CM=PM时,40=t2,解得t=±2,P点坐标为:P2(2,2)或P3(2,2);当CM=CP时,由勾股定理得:40=(2)2+(t6)2,解得t=12,P点坐标为:P4(2,12)综上所述,存在符合条件的点P,其坐标为P(2,)或P(2,2)或P(2,2)或P(2,12);(3)点A(2,0)和点B(6,0)关于抛物线的对称轴x=2对称,QB=QA,|QBQC|=|QAQC|,要使|QBQC|最大,则连结AC并延长,与直线x=2相交于点Q,即点Q为直线AC与直线x=2的交点,设直线AC的解析式为y=kx+m,A(2,0),C(0,6),解得,y=3x+6,当x=2时,y=3×(2)+6=12,故当Q在(2,12)的位置时,|QBQC|最大;(4)过点E作EFx轴于点F,设E(n,n22n+6)(6n0),则EF=n22n+6,BF=n+6,OF=n,S四边形BOCE=BFEF+(OC+EF)OF=(n+6)(n22n+6)+(6n22n+6)(n)=n29n+18=(n+3)2+,所以当n=3时,S四边形BOCE最大,且最大值为此时,点E坐标为(3,)

    注意事项

    本文(九年级数学期末复习压轴题 .doc)为本站会员(yy****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开