不等式恒成立问题教案 .doc
不等式恒成立问题适用学科高中数学适用年级高中三年级适用区域通用课时时长(分钟)60知识点函数性质法;主参换位法;分离参数法;数形结合法;消元转化法教学目标掌握解决恒成立问题常用以下几种方法:函数性质法;主参换位法;分离参数法;数形结合法;消元转化法;教学重点运用函数、导数解决恒成立问题教学难点推理能力和准确的计算能力的培养教学过程一、课堂导入纵观近几年高考对于不等式综合问题的考查,主要有三类问题:恒成立问题、能成立问题以及恰成立问题,要求学生有较强的推理能力和准确的计算能力,才能顺利解答从实际教学来看,这部分知识能力要求高、难度大,是学生掌握最为薄弱,看到就头疼的题目分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理本节课我们将就高中阶段出现这类问题加以类型的总结和方法的探讨二、复习预习新课标下的高考越来越注重对学生的综合素质的考察,恒成立问题便是一个考察学生综合素质的很好途径,它常以函数、方程、不等式和数列等知识点为载体,渗透着换元、化归、分类讨论、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用近几年的数学高考中频频出现恒成立问题,其形式逐渐多样化,但都与函数、导数知识密不可分三、知识讲解考点1函数性质法 有以下几种基本类型:类型1:设(1)上恒成立;(2)上恒成立类型2:设(1)当时,上恒成立上恒成立(2)当时,上恒成立上恒成立注:恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0)考点2 分离参数法极端化原则若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围利用分离参数法来确定不等式(,为实参数)恒成立中参数的取值范围的基本步骤:(1)将参数与变量分离,即化为(或)恒成立的形式;(2)求在上的最大(或最小)值;(3)解不等式(或) ,得的取值范围适用题型:(1)参数与变量能分离;(2)函数的最值易求出 考点3 主参换位反客为主法某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度“反客为主”,即把习惯上的主元变与参数变量的“地位”交换一下,变个视角重新审查恒成立问题,往往可避免不必要的分类讨论或使问题降次、简化,起到“山穷水尽疑无路,柳暗花明又一村”的出奇制胜的效果考点4 数形结合直观求解法若所给不等式进行合理的变形化为(或)后,能非常容易地画出不等号两边函数的图像,则可以通过画图直接判断得出结果尤其对于选择题、填空题这种方法更显方便、快捷考点5 不等式能成立问题的处理方法若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的注意不等式能成立问题(即不等式有解问题)与恒成立问题的区别从集合观点看,含参不等式在区间上恒成立,而含参不等式在区间上能成立至少存在一个实数使不等式成立四、例题精析考点一 函数性质法例1 (2012蚌埠二中考试)已知不等式对任意实数恒成立则取值范围是()A B C D 【规范解答】由不等式对任意实数恒成立,知或由此能求出的取值范围,解得考点二 分离参数法极端化原则例2 已知函数,当时,给出下列几个结论:;;当时,.其中正确的是 (将所有你认为正确的序号填在横线上)【规范解答】答案:试题分析:因为,所以,可知(0,)递减,(,+)递增,故错误;令,所以,可知在(0,1)上递减,(1,+)上递增,故错;令,所以h(x)在(0,+)上递增,所以,故正确;当时,可知,又因为f(x)在(,+)递增, 设,又因为f(x)在(,+)递增,所以时,即,所以时,故为增函数,所以,所以,故正确.考点三 主参换位反客为主法例3已知函数(1)若在上是增函数,求的取值范围;(2)若在处取得极值,且时,恒成立,求的取值范围【规范解答】解题思路:(1)利用“若函数在某区间上单调递增,则在该区间恒成立”求解;(2)先根据在处取得极值求得值,再将恒成立问题转化为求,解关于的不等式即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立;求函数最值的步骤: 求导函数;求极值;比较极值与端点值,得出最值.试题解析:(1) 因在上是增函数,则f(x)0,即3x2xb0,bx3x2在(,)恒成立设g(x)x3x2,当x时,g(x)max,b.(2)由题意,知f(1)0,即31b0,b2. x1,2时,f(x)c2恒成立,只需f(x)在1,2上的最大值小于c2即可因f(x)3x2x2,令f(x)0,得x1,或x.f(1)c,f()c,f(1)c,f(2)2c,f(x)maxf(2)2c,2cc2,解得c2,或c1,所以c的取值范围为(,1)(2,).考点四 数形结合例4设函数.(1)当时,求函数的单调区间;(2)若当时,求a的取值范围.【规范解答】试题分析:(1)由得到,求其导数,解不等式得到函数的增区间, 解不等式得到函数的减区间;(2)法一:由当时得: 等价于: 在时恒成立,令,注意到,所以只需上恒成立即可,故有在上恒成立,则所以有.法二:将在时恒成立等价转化为:恒成立函数的图象恒在函数图象的上方,由图象可求得a的取值范围.试题解析:(1)当时,当时,;当时,时,当时,增区间,减区间(2)由当时得: 等价于: 在时恒成立,等价转化为:恒成立函数的图象恒在函数图象的上方,如图:,由于直线恒过定点,而,所以函数图象在点(0,1)处的切线方程为:,故知:,即的取值范围为.五、课堂运用【基础】1、定义在上的单调递减函数,若的导函数存在且满足,则下列不等式成立的是( )A BC D【规范解答】答案:试题分析:f(x)在上单调递减,,又,f(x)<,令,g(x)在上单调递增,g(2)>g(1),即,即3f(2)<2f(3),A正确考点:利用导数证明抽象函数不等式2下列不等式对任意的恒成立的是( )A B C D【规范解答】答案:C试题分析:对于A,可转化为x+sinx>1,取x=0,结合函数x+sinx的连续性可知A错误,对于B取x=2,可知B错误,对于D取x=1,可知D错误,对于C,令f(x)=x-ln(1+x),则,f(x)在上单调递增,f(x)>f(0)=0,即x>ln(1+x)成立【巩固】1.若函数在上单调递减,则实数的取值范围为( )A. B. C. D.【规范解答】答案:A试题分析:,因为函数在上单调递减,则在上即恒成立,等价于在上恒成立,所以。故A正确。2.已知函数在区间(0,1)内任取两个实数p,q,且pq,不等式恒成立,则实数的取值范围为( )A B C D【规范解答】答案:A试题分析:由已知得,且,等价于函数在区间上任意两点连线的割线斜率大于1,等价于函数在区间的切线斜率大于1恒成立,即恒成立,变形为,因为,故【拔高】1.函数对于总有0 成立,则= 【规范解答】答案:4试题分析:因为总有0 成立,所以当时,有恒成立,令,知当时,当时,当时;所以在时知;当时,有恒成立,由上知在上恒大于0,所以在-1,0)上是增函数,故在-1,0)上,所以有,又注意到当x=0时,不论a为何值不等式0总成立;综上可知a=4.2.已知函数f(x)的导数f(x)a(x1)(xa),若f(x)在xa处取得极大值,则a的取值范围是_【规范解答】答案:(1,0)解析:若a0,则f(x)0,函数f(x)不存在极值;若a1,则f(x)(x1)20,函数f(x)不存在极值;若a0,当x(1,a)时,f(x)0,当x(a,)时,f(x)0,所以函数f(x)在xa处取得极小值;若1a0,当x(1,a)时,f(x)0,当x(a,)时,f(x)0,所以函数f(x)在xa处取得极大值;若a1,当x(,a)时,f(x)0,当x(a,1)时,f(x)0,所以函数f(x)在xa处取得极小值,所以a(1,0)课程小结1.解决高考数学中的恒成立问题常用以下几种方法:函数性质法;主参换位法;分离参数法;数形结合法;消元转化法2.近几年数学高考中恒成立问题的题型及解法,值得一提的是,各种类型各种方法并不是完全孤立的,虽然方法表现的不同,但其实质却都与求函数的最值是等价的,这也正体现了数学中的“统一美”