欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三角函数的图像和性质知识点及例题讲解 .doc

    • 资源ID:97456650       资源大小:655KB        全文页数:6页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数的图像和性质知识点及例题讲解 .doc

    三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx xÎ0,2p的图像中,五个关键点是:(0,1) (,0) (p,-1) (,0) (2p,1)2、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,当时, ;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴例作下列函数的简图(1)y=|sinx|,x0,2, (2)y=-cosx,x0,2例利用正弦函数和余弦函数的图象,求满足下列条件的x的集合: 3、周期函数定义:对于函数,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:,那么函数就叫做周期函数,非零常数T叫做这个函数的周期。注意: 周期T往往是多值的(如 2p,4p,-2p,-4p,都是周期)周期T中最小的正数叫做的最小正周期(有些周期函数没有最小正周期), 的最小正周期为2p (一般称为周期) 正弦函数、余弦函数:。正切函数:例求下列三角函数的周期:1° y=sin(x+) 2° y=cos2x 3° y=3sin(+) 4° y=tan3x 例求下列函数的定义域和值域:(1) (2) (3)例5求函数的单调区间 例不求值,比较大小(1)sin()、sin(); (2)cos()、cos()解:(1) (2)cos()coscos且函数ysinx,x,是增函数 cos()coscossin()sin() 0即sin()sin()0 且函数ycosx,x0,是减函数coscos即coscos0cos()cos()04、函数的图像:(1)函数的有关概念:振幅:; 周期:; 频率:; 相位:; 初相:(2) 振幅变换y=Asinx,xÎR(A>0且A¹1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍得到的它的值域-A, A 最大值是A, 最小值是-A若A<0 可先作y=-Asinx的图象 ,再以x轴为对称轴翻折A称为振幅,这一变换称为振幅变换(3) 周期变换函数y=sinx, xÎR (>0且¹1)的图象,可看作把正弦曲线上所有点的横坐标缩短(>1)或伸长(0<<1)到原来的倍(纵坐标不变)若<0则可用诱导公式将符号“提出”再作图决定了函数的周期,这一变换称为周期变换(4) 相位变换一般地,函数ysin(x),xR(其中0)的图象,可以看作把正弦曲线上所有点向左(当0时)或向右(当0时平行移动个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)ysin(x)与ysinx的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换5、小结平移法过程(步骤)作y=sinx(长度为2p的某闭区间)得y=sin(x+)得y=sinx得y=sin(x+)得y=sin(x+)得y=Asin(x+)的图象,先在一个周期闭区间上再扩充到R上。沿x轴平 移|个单位横坐标 伸长或缩短横坐标伸 长或缩短沿x轴平 移|个单位纵坐标伸 长或缩短纵坐标伸 长或缩短图e6、函数,当时,取得最小值为 ;当时,取得最大值为,则,例 如图e,是f(x)Asin(x),A0,的一段图象,则f(x)的表达式为 例 如图b是函数yAsin(x)2的图象的一部分,它的振幅、周期、初相各是( )AA3,BA1,CA1,DA1,例 画出函数y3sin(2x),xR的简图解:(五点法)由T,得T 列表:x2x+023sin(2x+)03030例求函数的定义域、值域,并指出它的周期性、奇偶性、单调性解:由得,所求定义域为 值域为R,周期,是非奇非偶函数在区间上是增函数例 已知函数y=sin2x+cos2x-2 (1)用“五点法”作出函数在一个周期内的图象 (2)求这个函数的周期和单调区间 (3)求函数图象的对称轴方程 (4)说明图象是由y=sinx的图象经过怎样的变换得到的 解:y=sin2x+cos2x-2=2sin(2x+)-2(1)列表 x02-20-2-4-2其图象如图示 (2)= 由-+2k2x+2k,知函数的单调增区间为 -+k,+k,kZ 由+2k2x+2k,知函数的单调减区间为 +k,+k,kZ (3)由2x+=+k得x=+ 函数图象的对称轴方程为x=+,(kZ) (4)把函数y1=sinx的图象上所有点向左平移个单位,得到函数y2=sin(x+)的图象; 再把y2图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到y3=sin (2x+)的图象; 再把y3图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到y4=2sin (2x+)的图象; 最后把y4图象上所有点向下平移2个单位,得到函数y=2sin (2x+)-2的图象

    注意事项

    本文(三角函数的图像和性质知识点及例题讲解 .doc)为本站会员(yy****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开