欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    上海市小学数学30类典型应用题 .doc

    • 资源ID:97456780       资源大小:57KB        全文页数:19页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    上海市小学数学30类典型应用题 .doc

    1 归一问题【数量关系】 总量÷份数1份数量 1份数量×所占份数所求几份的数量另一总量÷(总量÷份数)所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 答:需要 元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷? 答:5台拖拉机6 天耕地 公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 答:需要运 次。2 归总问题【数量关系】 1份数量×份数总量 总量÷1份数量份数总量÷另一份数另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 答:现在可以做 套。例2 小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?答:小明 天可以读完红岩。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 答:这批蔬菜可以吃 天。3 和差问题【数量关系】 大数(和差)÷ 2 小数(和差)÷ 2【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 答:甲班有 人,乙班有 人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。答:长方形的面积为 平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。答:甲袋化肥重 千克,乙袋化肥重 千克,丙袋化肥重 千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?答:甲车原来装苹果64筐,乙车原来装苹果33筐。4 和倍问题【数量关系】 总和 ÷(几倍1)较小的数 总和 较小的数 较大的数较小的数 ×几倍 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵? 答:杏树有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?答:甲数是28,乙数是52,丙数是90。5 差倍问题【数量关系】 两个数的差÷(几倍1)较小的数 较小的数×几倍较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?答:父子二人今年的年龄分别是36岁和9岁。例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?答:8天以后剩下的玉米是小麦的3倍。6 倍比问题【数量关系】 总量÷一个数量倍数 另一个数量×倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?答:可以榨油1480千克。例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?答:全乡800亩果园共收入元,全县16000亩果园共收入元。7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程÷(甲速乙速) 总路程(甲速乙速)×相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?答:经过8小时两船相遇。例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。答:两地距离是84千米。8 追及问题【数量关系】 追及时间追及路程÷(快速慢速) 追及路程(快速慢速)×追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?答:好马 天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。答:小亮的速度是每秒3米。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?答:解放军在6小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。答:甲乙两站的距离是352千米。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?答:家离学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。答:孙亮跑步速度为每小时 5.5千米。9 植树问题【数量关系】 线形植树 棵数距离÷棵距1 环形植树 棵数距离÷棵距 方形植树 棵数距离÷棵距4 三角形植树 棵数距离÷棵距3 面积植树 棵数面积÷(棵距×行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?答:至少需要400块地板砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?答:大桥两边一共可以安装44盏路灯。10 年龄问题【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。 两个数的差÷(几倍1)较小的数例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?(可用方程解)因为两个人的年龄差总相等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (614)÷319(岁) 甲今年的岁数为 611942(岁)乙今年的岁数为 421923(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题【数量关系】 (顺水速度逆水速度)÷2船速 (顺水速度逆水速度)÷2水速 顺水速船速×2逆水速逆水速水速×2 逆水速船速×2顺水速顺水速水速×2【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?答:这只船逆水行这段路程需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?答:飞机顺风飞回需要2.76小时。12 列车问题【数量关系】 火车过桥:过桥时间(车长桥长)÷车速 火车追及:追及时间(甲车长乙车长距离)÷(甲车速乙车速) 火车相遇:相遇时间(甲车长乙车长距离)÷(甲车速乙车速)【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?答:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?答:这列火车的车速是每秒25米,车身长200米。13 时钟问题【数量关系】 分针的速度是时针的12倍, 二者的速度差为11/12。 通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/601/12格。每分钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20÷(11/12) 22(分)答:再经过22分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×415)格。再根据1分钟分针比时针多走(11/12)格就可以求出二针成直角的时间。(5×415)÷(11/12) 6(分)(5×415)÷(11/12) 38(分)答:4点06分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(5×6)÷(11/12) 33(分)答:6点33分的时候分针与时针重合。14 盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数(盈亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数(大盈小盈)÷分配差参加分配总人数(大亏小亏)÷分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?答:有小朋友12人,有47个苹果。例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?答:这条路全长7800米。例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?答:有6 辆车,有270人。16 正反比例问题【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?答: 这条公路总长3600米。例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?答:91分钟可以做13道应用题。例3 孙亮看十万个为什么这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?答:10天就可以看完。17 按比例分配问题【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数比的前后项之和【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?答:一、二、三班分别植树188棵、192棵、180棵。例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是345。三条边的长各是多少厘米?答:三角形三条边的长分别是15厘米、20厘米、25厘米。例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。例4 某工厂第一、二、三车间人数之比为81221,第一车间比第二车间少80人,三个车间共多少人?答:三个车间一共820人。18 百分数问题【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数比较量÷标准量 标准量比较量÷百分数【解题思路和方法】 一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?答:用去了10%,剩下90%。例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几? 答:男职工人数比女职工少20%。例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?答:女职工人数比男职工多25%。例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?答:男职工占全厂职工总数的44.4%,女职工占55.6%。例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有:增长率增长数÷原来基数×100% 合格率合格产品数÷产品总数×100%出勤率实际出勤人数÷应出勤人数×100% 出勤率实际出勤天数÷应出勤天数×100%缺席率缺席人数÷实有总人数×100% 发芽率发芽种子数÷试验种子总数×100%成活率成活棵数÷种植总棵数×100% 出粉率面粉重量÷小麦重量×100%出油率油的重量÷油料重量×100% 废品率废品数量÷全部产品数量×100%命中率命中次数÷总次数×100% 烘干率烘干后重量÷烘前重量×100%及格率及格人数÷参加考试人数×100%19 “牛吃草”问题【数量关系】 草总量原有草量草每天生长量×天数【解题思路和方法】 解这类题的关键是求出草每天的生长量。例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量原有草量草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛? 设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以 1×10×20原有草量20天内生长量同理 1×15×10原有草量10天内生长量由此可知 (2010)天内草的生长量为1×10×201×15×1050因此,草每天的生长量为 50÷(2010)5(2)求原有原有草量10天内总草量10内生长量1×15×105×10100(3)求5 天内草总量5 天内草总量原有草量5天内生长量1005×5125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。因此5天吃完草需要牛的头数 125÷525(头)答:需要5头牛5天可以把草吃完。例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?解:这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量1×12×3原有水量3小时进水量10小时内的总水量1×5×10原有水量10小时进水量所以,(103)小时内的进水量为 1×5×101×12×314因此,每小时的进水量为 14÷(103)2(2)求淘水前原有水量原有水量1×12×33小时进水量362×330(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(172),所以17人淘完水的时间是30÷(172)2(小时)答:17人2小时可以淘完水。20 鸡兔同笼问题【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数(实际脚数2×鸡兔总数)÷(42)假设全都是兔,则有鸡数(4×鸡兔总数实际脚数)÷(42)第二鸡兔同笼问题:假设全都是鸡,则有兔数(2×鸡兔总数鸡与兔脚之差)÷(42)假设全都是兔,则有鸡数(4×鸡兔总数鸡与兔脚之差)÷(42)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?答:有鸡23只,有兔12只。例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?答:白菜地有10亩。例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?答:作业本有15本,日记本有30本。例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?答:有鸡80只,有兔20只。例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?答:共有大和尚25人,有小和尚75人。22 商品利润问题【数量关系】 利润售价进货价 利润率(售价进货价)÷进货价×100% 售价进货价×(1利润率) 亏损进货价售价 亏损率(进货价售价)÷进货价×100%【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?答:二月份比原价下降了1%。例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?答:该店是盈利的,盈利率是4%。例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?答:剩下的作业本是按原定价的八折出售的。例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。答:乙店的定价是240元。23 存款利率问题【数量关系】 年(月)利率利息÷本金÷存款年(月)数×100% 利息本金×存款年(月)数×年(月)利率 本利和本金利息 本金×1年(月)利率×存款年(月)数【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。答:李大强的存款期是30月即两年半。例2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?答:乙的收益较多,乙比甲多38.53元。24 溶液浓度问题【数量关系】 溶液溶剂溶质浓度溶质÷溶液×100%【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?答:(1)需要加水30克,(2)需要加糖10克。例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?答:需要15%的糖水溶液200克,需要30%的糖水400克。27 抽屉原则问题【数量关系】基本的抽屉原则是:如果把n1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。抽屉原则可以推广为:如果有m个抽屉,有k×mr(0rm)个元素那么至少有一个抽屉中要放(k1)个或更多的元素。通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k1)个或更多的元素。【解题思路和方法】 (1)改造抽屉,指出元素; (2)把元素放入(或取出)抽屉; (3)说明理由,得出结论。例1 育才小学有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?这说明至少有2个学生的生日是同一天的。例2 据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答:陕西省至少有183人的头发根数一样多。例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?答;他至少要取12个球才能保证至少有4个球的颜色相同。28 公约公倍问题【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。例1 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?答:正方形的边长是4厘米。例2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?所以,至少应植树 (60729684)÷1226(棵)答:至少要植26棵树。例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。答:棋子的总数是181个。29 最值问题【数量关系】 一般是求最大值或最小值。【解题思路和方法】 按照题目的要求,求出最大值或最小值。例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?答:最少需要9分钟。30 列方程问题【数量关系】 方程的等号两边数量相等。【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。(2)设:把应用题中的未知数设为。(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。(4)解;求出所列方程的解。(5)验:检验方程的解是否正确,是否符合题意。(6)答:回答题目所问,也就是写出答问的话。同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?答:甲班有50人,乙班有40人。例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?答:鸡是23只,兔是12只。例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?答:乙汽车每次运110袋。 消去法在一些应用题中,有时会出现两个或两个以上并列的未知数,我们可以根据数据特点,设法消去一个或两个未知数,只保留其中的一个未知数,在求得这个未知数后,再求出其它的未知数。这种解题思路和方法就是消去法。例1学校买了4张办公桌和1把椅子,共用去510元,后又买来6张办公桌和1把椅子共用去750元。求每张办公桌和每把椅子各多少元?答:每张办公桌为120元,每把椅子为30元

    注意事项

    本文(上海市小学数学30类典型应用题 .doc)为本站会员(yy****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开