欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2018年高考数学压轴题小题 .doc

    • 资源ID:97466322       资源大小:280KB        全文页数:15页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018年高考数学压轴题小题 .doc

    2018年高考数学压轴题小题一选择题(共6小题)1(2018新课标)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=()A50B0C2D502(2018新课标)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120°,则C的离心率为()ABCD3(2018上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD04(2018浙江)已知,是平面向量,是单位向量若非零向量与的夹角为,向量满足4+3=0,则|的最小值是()A1B+1C2D25(2018浙江)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点)设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A123B321C132D2316(2018浙江)函数y=2|x|sin2x的图象可能是()ABCD7(2018江苏)在平面直角坐标系xOy中,若双曲线=1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 8(2018江苏)若函数f(x)=2x3ax2+1(aR)在(0,+)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为 9(2018天津)已知a0,函数f(x)=若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是 10(2018北京)已知椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 11(2018上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为 12(2018上海)已知常数a0,函数f(x)=的图象经过点P(p,),Q(q,)若2p+q=36pq,则a= 13(2018浙江)已知R,函数f(x)=,当=2时,不等式f(x)0的解集是 若函数f(x)恰有2个零点,则的取值范围是 14(2018浙江)已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大15(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数(用数字作答)三解答题(共2小题)16(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解17(2018浙江)已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(,)()求sin(+)的值;()若角满足sin(+)=,求cos的值2018年高考数学压轴题小题参考答案与试题解析一选择题(共6小题)1(2018新课标)已知f(x)是定义域为(,+)的奇函数,满足f(1x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=()A50B0C2D50【解答】解:f(x)是奇函数,且f(1x)=f(1+x),f(1x)=f(1+x)=f(x1),f(0)=0,则f(x+2)=f(x),则f(x+4)=f(x+2)=f(x),即函数f(x)是周期为4的周期函数,f(1)=2,f(2)=f(0)=0,f(3)=f(12)=f(1)=f(1)=2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+02+0=0,则f(1)+f(2)+f(3)+f(50)=12f(1)+f(2)+f(3)+f(4)+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C2(2018新课标)已知F1,F2是椭圆C:=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P=120°,则C的离心率为()ABCD【解答】解:由题意可知:A(a,0),F1(c,0),F2(c,0),直线AP的方程为:y=(x+a),由F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,题意的离心率e=故选:D3(2018上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()ABCD0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当f(1)=,0时,此时得到的圆心角为,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B故选:B4(2018浙江)已知,是平面向量,是单位向量若非零向量与的夹角为,向量满足4+3=0,则|的最小值是()A1B+1C2D2【解答】解:由4+3=0,得,()(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x0)上不妨以y=为例,则|的最小值是(2,0)到直线的距离减1即故选:A5(2018浙江)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点)设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A123B321C132D231【解答】解:由题意可知S在底面ABCD的射影为正方形ABCD的中心过E作EFBC,交CD于F,过底面ABCD的中心O作ONEF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则1=SEN,2=SEO,3=SMO显然,1,2,3均为锐角tan1=,tan3=,SNSO,13,又sin3=,sin2=,SESM,32故选:D6(2018浙江)函数y=2|x|sin2x的图象可能是()ABCD【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B当x=时,函数的值也为0,故排除C故选:D二填空题(共9小题)7(2018江苏)在平面直角坐标系xOy中,若双曲线=1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2【解答】解:双曲线=1(a0,b0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=故答案为:28(2018江苏)若函数f(x)=2x3ax2+1(aR)在(0,+)内有且只有一个零点,则f(x)在1,1上的最大值与最小值的和为3【解答】解:函数f(x)=2x3ax2+1(aR)在(0,+)内有且只有一个零点,f(x)=2x(3xa),x(0,+),当a0时,f(x)=2x(3xa)0,函数f(x)在(0,+)上单调递增,f(0)=1,f(x)在(0,+)上没有零点,舍去;当a0时,f(x)=2x(3xa)0的解为x,f(x)在(0,)上递减,在(,+)递增,又f(x)只有一个零点,f()=+1=0,解得a=3,f(x)=2x33x2+1,f(x)=6x(x1),x1,1,f(x)0的解集为(1,0),f(x)在(1,0)上递增,在(0,1)上递减,f(1)=4,f(0)=1,f(1)=0,f(x)min=f(1)=4,f(x)max=f(0)=1,f(x)在1,1上的最大值与最小值的和为:f(x)max+f(x)min=4+1=39(2018天津)已知a0,函数f(x)=若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是(4,8)【解答】解:当x0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=x2,得a=,设g(x)=,则g(x)=,由g(x)0得2x1或1x0,此时递增,由g(x)0得x2,此时递减,即当x=2时,g(x)取得极小值为g(2)=4,当x0时,由f(x)=ax得x2+2ax2a=ax,得x2ax+2a=0,得a(x2)=x2,当x=2时,方程不成立,当x2时,a=设h(x)=,则h(x)=,由h(x)0得x4,此时递增,由h(x)0得0x2或2x4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4a8,故答案为:(4,8)10(2018北京)已知椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2【解答】解:椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e48e2+4=0,e(0,1),解得e=同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e=2故答案为:;211(2018上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且=1×1×cosAOB=,即有AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+12(2018上海)已知常数a0,函数f(x)=的图象经过点P(p,),Q(q,)若2p+q=36pq,则a=6【解答】解:函数f(x)=的图象经过点P(p,),Q(q,)则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a0,故:a=6故答案为:613(2018浙江)已知R,函数f(x)=,当=2时,不等式f(x)0的解集是x|1x4若函数f(x)恰有2个零点,则的取值范围是(1,3(4,+)【解答】解:当=2时函数f(x)=,显然x2时,不等式x40的解集:x|2x4;x2时,不等式f(x)0化为:x24x+30,解得1x2,综上,不等式的解集为:x|1x4函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则13或4故答案为:x|1x4;(1,3(4,+)14(2018浙江)已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),=2,可得x1=2x2,1y1=2(y21),即有x1=2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,x22+4y22=4m,得(y12y2)(y1+2y2)=3m,可得y12y2=m,解得y1=,y2=,则m=x22+()2,即有x22=m()2=,即有m=5时,x22有最大值4,即点B横坐标的绝对值最大故答案为:515(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数(用数字作答)【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数故答案为:1260三解答题(共2小题)16(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解【解答】解:(1)f(x)=asin2x+2cos2x,f(x)=asin2x+2cos2x,f(x)为偶函数,f(x)=f(x),asin2x+2cos2x=asin2x+2cos2x,2asin2x=0,a=0;(2)f()=+1,asin+2cos2()=a+1=+1,a=,f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,f(x)=1,2sin(2x+)+1=1,sin(2x+)=,2x+=+2k,或2x+=+2k,kZ,x=+k,或x=+k,kZ,x,x=或x=或x=或x=17(2018浙江)已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(,)()求sin(+)的值;()若角满足sin(+)=,求cos的值【解答】解:()角的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(,)x=,y=,r=|OP|=,sin(+)=sin=;()由x=,y=,r=|OP|=1,得,又由sin(+)=,得=,则cos=cos(+)=cos(+)cos+sin(+)sin=,或cos=cos(+)=cos(+)cos+sin(+)sin=cos的值为或

    注意事项

    本文(2018年高考数学压轴题小题 .doc)为本站会员(yy****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开