分段函数的几种常见题型及解法好 .doc
分段函数的几种常见题型及解法【关键词】 分段函数; 定义域; 值域或最值; 函数值; 解析式; 图像; 反函数; 奇偶性; 方程; 不等式. 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1求分段函数的定义域和值域例1求函数的定义域、值域. 【解析】作图, 利用“数形结合”易知的定义域为, 值域为. 2求分段函数的函数值例2(05年浙江理)已知函数求. 【解析】因为, 所以. 3求分段函数的最值例3求函数的最大值. 【解析】当时, , 当时, , 当时, , 综上有. 4求分段函数的解析式例4在同一平面直角坐标系中, 函数和的图象关于直线对称, 现将的图象沿轴向左平移2个单位, 再沿轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数的表达式为( )【解析】当时, , 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式为, 所以, 当时, , 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式, 所以, 综上可得, 故选A. 5作分段函数的图像例5函数的图像大致是( ) 6求分段函数得反函数例6已知是定义在上的奇函数, 且当时, , 设得反函数为, 求的表达式. 【解析】设, 则, 所以, 又因为是定义在上的奇函数, 所以, 且, 所以, 因此, 从而可得. 7判断分段函数的奇偶性例7判断函数的奇偶性. 【解析】当时, , , 当时, , 当, , 因此, 对于任意都有, 所以为偶函数. 8判断分段函数的单调性例8判断函数的单调性. 【解析】显然连续. 当时, 恒成立, 所以是单调递增函数, 当时, 恒成立, 也是单调递增函数, 所以在上是单调递增函数; 或画图易知在上是单调递增函数. 例9写出函数的单调减区间. 【解析】, 画图易知单调减区间为. 9解分段函数的方程例10(01年上海)设函数, 则满足方程的的值为 【解析】若, 则, 得, 所以(舍去), 若, 则, 解得, 所以即为所求. 10解分段函数的不等式例11设函数, 若, 则得取值范围是( ) 【解析1】首先画出和的大致图像, 易知时, 所对应的的取值范围是. 【解析2】因为, 当时, , 解得, 当时, , 解得, 综上的取值范围是. 故选D. 例12设函数, 则使得的自变量的取值范围为( )A B. C. D. 【解析】当时, , 所以, 当时, , 所以, 综上所述, 或, 故选A项. 【点评:】 以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.