函数单调性奇偶性经典例题 .doc
函数的性质的运用1若函数是奇函数,则下列坐标表示的点一定在函数图象上的是( )A. B. C. D.2. 已知函数是奇函数,则的值为( )A B C D3已知f(x)是偶函数,g(x)是奇函数,若,则f(x)的解析式为_4已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)0的所有实根之和为_5.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,yR都有f(x+y)=f(x)+f(y)(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)0对任意xR恒成立,求实数k的取值范围6.已知定义在区间(0,+)上的函数f(x)满足f(=f(x1)-f(x2),且当x1时,f(x)0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)-2.7.函数f(x)对任意的a、bR,都有f(a+b)=f(a)+f(b)-1,并且当x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3. 8.设f(x)的定义域为(0,+),且在(0,+)是递增的,(1)求证:f(1)=0,f(xy)=f(x)+f(y);(2)设f(2)=1,解不等式。9.设函数对都满足,且方程恰有6个不同 的实数根,则这6个实根的和为( )A 0 B9 C12 D1810.关于的方程 的两个实根 、 满足 , 则实数m的取值范围 11.已知函数满足,且1,1时, 则与的图象交点的个数是( )A3 B4 C5D612.已知函数满足:,则;当时,则 13.已知函数f(x)在(1,1)上有定义,f()=1,当且仅当0<x<1时f(x)<0,且对任意x、y(1,1)都有f(x)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(1,1)上单调递减.14.函数f(x)=的图象( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线x=1对称15.函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_.16.若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),且在x2,+上单调递增,则b的取值范围是_.17.已知函数f(x)=ax+ (a>1).(1)证明:函数f(x)在(1,+)上为增函数.(2)用反证法证明方程f(x)=0没有负数根.18.求证函数f(x)=在区间(1,+)上是减函数.19设函数f(x)的定义域关于原点对称且满足:(i)f(x1x2)=;(ii)存在正常数a使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.20.已知函数f(x)的定义域为R,且对m、nR,恒有f(m+n)=f(m)+f(n)1,且f()=0,当x>时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.21.已知奇函数f(x)是定义在(3,3)上的减函数,且满足不等式f(x3)+f(x23)<0,设不等式解集为A,B=Ax|1x,求函数g(x)=3x2+3x4(xB)的最大值.22.设f(x)是(,+)上的奇函数,f(x+2)=f(x),当0x1时,f(x)=x,则f(7.5)等于( )A.0.5B.0.5C.1.5D.1.523.已知定义域为(1,1)的奇函数y=f(x)又是减函数,且f(a3)+f(9a2)<0,则a的取值范围是( )A.(2,3)B.(3,)C.(2,4)D.(2,3)24.若f(x)为奇函数,且在(0,+)内是增函数,又f(3)=0,则xf(x)<0的解集为_.25.如果函数f(x)在R上为奇函数,在(1,0)上是增函数,且f(x+2)=f(x),试比较f(),f(),f(1)的大小关系_.参考答案6.(1)f(1) = f(1/1) = f(1) - f(1) = 0。(2)当0 < x < y时,y/x > 1,所以f(y) - f(x) = f(y/x) < 0 。故f单调减。(3)f(3) = -1,f(3) = f(9/3) = f(9) - f(3),f(9) = -2而 f(x)-2 = f(9),且f单调减,所以| x | > 9 x9或x-97.(1)设x1,x2R,且x1x2, 则x2-x10,f(x2-x1)1. f(x2)-f(x1)=f(x2-x1)+x1)-f(x1) =f(x2-x1)+f(x1)-1-f(x1) =f(x2-x1)-10. f(x2)f(x1).即f(x)是R上的增函数. (2)f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,原不等式可化为f(3m2-m-2)f(2),f(x)是R上的增函数,3m2-m-22, 解得-1m ,故解集为 . 13.证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=x,得f(x)+f(x)=f()=f(0)=0f(x)=f(x).f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减.令0<x1<x2<1,则f(x2)f(x1)=f(x2)f(x1)=f()0<x1<x2<1,x2x1>0,1x1x2>0,>0,又(x2x1)(1x2x1)=(x21)(x1+1)<0x2x1<1x2x1,0<<1,由题意知f()<0,即f(x2)<f(x1).f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.f(x)在(1,1)上为减函数.14.解析:f(x)=f(x),f(x)是奇函数,图象关于原点对称.答案:C15.解析:令t=|x+1|,则t在(,1上递减,又y=f(x)在R上单调递增,y=f(|x+1|)在(,1上递减.答案:(,116.解析:f(0)=f(x1)=f(x2)=0,f(0)=d=0.f(x)=ax(xx1)(xx2)=ax3a(x1+x2)x2+ax1x2x,b=a(x1+x2),又f(x)在x2,+单调递增,故a>0.又知0x1x,得x1+x2>0,b=a(x1+x2)0.答案:(,0)17.证明:(1)设1x1x2+,则x2x1>0, >1且>0,>0,又x1+1>0,x2+1>0>0,于是f(x2)f(x1)=+ >0f(x)在(1,+)上为递增函数.(2)证法一:设存在x00(x01)满足f(x0)=0,则且由01得01,即x02与x00矛盾,故f(x)=0没有负数根.证法二:设存在x00(x01)使f(x0)=0,若1x00,则2,1,f(x0)1与f(x0)=0矛盾,若x01,则>0, >0,f(x0)>0与f(x0)=0矛盾,故方程f(x)=0没有负数根.18.证明:x0,f(x)=,设1x1x2+,则.f(x1)>f(x2),故函数f(x)在(1,+)上是减函数.19.证明:(1)不妨令x=x1x2,则f(x)=f(x2x1)= =f(x1x2)=f(x).f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a).f(x+a)=fx(a)=.f(x+4a)=f(x+2a)+2a=f(x),故f(x)是以4a为周期的周期函数.20.证明:设x1x2,则x2x1>,由题意f(x2x1)>0,f(x2)f(x1)=f(x2x1)+x1f(x1)=f(x2x1)+f(x1)1f(x1)=f(x2x1)1=f(x2x1)+f()1=f(x2x1)>0,f(x)是单调递增函数.(2)解:f(x)=2x+1.验证过程略.21.解:由且x0,故0<x<,又f(x)是奇函数,f(x3)<f(x23)=f(3x2),又f(x)在(3,3)上是减函数,x3>3x2,即x2+x6>0,解得x>2或x<3,综上得2<x<,即A=x|2<x<,B=Ax|1x=x|1x<,又g(x)=3x2+3x4=3(x)2知:g(x)在B上为减函数,g(x)max=g(1)=4.22.解析:f(7.5)=f(5.5+2)=f(5.5)=f(3.5+2)=f(3.5)=f(1.5+2)=f(1.5)=f(0.5+2)=f(0.5)=f(0.5)=0.5.答案:B23.解析:f(x)是定义在(1,1)上的奇函数又是减函数,且f(a3)+f(9a2)0.f(a3)f(a29). a(2,3).答案:A24.解析:由题意可知:xf(x)0x(3,0)(0,3)答案:(3,0)(0,3)25.解析:f(x)为R上的奇函数f()=f(),f()=f(),f(1)=f(1),又f(x)在(1,0)上是增函数且>>1.f()>f()>f(1),f()f()f(1).答案:f()f()f(1)