欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf

    • 资源ID:97753621       资源大小:20.69MB        全文页数:53页
    • 资源格式: PDF        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf

    Future-proofing BI:an unexpected journey to leverageIn-Chip analytics in IoT and AIAni ManianHead of Product Strategy|TalkingdataSIMPLIFYING Business Analytics for COMPLEX Data“The key strength of Sisense is the platforms capability to easily handle and manage large and diverse datasets,and analyze them in dashboards based on its proprietary In-Chip technology.”-Gartner Magic Quadrant|TalkingdataHOW IT ALL STARTED|TalkingdataWHAT DO FIVE DATA GEEK STUDENTS DREAM ABOUT?|TalkingdataWELL,BELIEVING THEYRE BADASS THEYRE DREAMING OF|TalkingdataBEER&CHIPS|TalkingdataBeerDataIN ORDER TO UNDERSTAND IN-CHIPANALYTICSLETS ASSUME THAT:|TalkingdataMEMORY HIERARCHY IN MODERN CPUSL3 CacheCapacity:6MB-20MBLatency:35 CyclesL2 CacheCapacity:256KB-1MBLatency:10 CyclesL1 CacheCapacity:64KB-128KBLatency:3 CyclesCPUMain MemoryCapacity:GBs-TBsLatency:150-450 CyclesRAMRAMRAMDiskCapacity:UnlimitedLatency:1M CyclesDISK|TalkingdataSO,WHY SHOULD WE EVEN CARE?Slowdown when fetching new data to the CPUx50SlowdownMain MemoryUp tox100 x10SlowdownL3 Cachex3SlowdownL2 Cache|TalkingdataMEMORY BANDWIDTH L1 cacheHome fridge DistanceImmediateCustomerx1L2/l3 cacheShopDistanceBicycleCustomerx10RamSupermarketDistanceCar Customerx50DiskBreweryDistanceAirplaneCustomerIf data equals beer then data storage units equal all the places beer is kept!|TalkingdataTHERE SHOULD HAVE BEEN A SLIDE HERE.(its the beers fault)How does Sisense overcome the memory bottleneck?|TalkingdataStore all data on the DiskOnly Use RAM When a Query RunsLoad Only the Relevant Columns in RAMHOW DOES SISENSE OVERCOME THE MEMORY BOTTLENECK?VECTORIZATIONJIT LLVM&SIMD|TalkingdataVECTORIZATION&CACHE AWARENESSL1 CacheFirst into RAMOP1004K(Values)1004K(Values)1004K(Values)Result VectorPush Back To RAM1004K(Values)SIMD REGISTERApply Operation On 4/8 Data Elements SimultaneouslyOPOPColumn 41004K(Values)ResultVector1004K(Values)Column 11004K(Values)Column 21004K(Values)Column 31004K(Values)|TalkingdataJIT LLVM COMPILATION WITH SIMD SUPPORTint f int a,int b)elsem0m1m2m3m0m1m2m3Return a;a0a1a2a3returna=0;a0a1a2a30000withmaskm0m1m2m3if a 0)m0m1m2m3a0a1a2a310=0/=1OR&Mask Vectorf2 Vector“Customer 1”“Customer 2”OR&Mask Vectorf3 Vector“1”/”2”/”3”OR&Mask VectorL1 CacheField Vector=ValueMask Vector=True/FalseSELECT(f1=“beer1”OR f1=“beer2”)ANDFROM T1(f2=“customer1”OR f2=“customer2”)ANDWHERE(f3=“1”OR f3=“2”OR f3=“3”)AND(f4”10”OR f4=“0”OR f4=“1”)|TalkingdataNEXT:PERFORMANCE TUNING FOR MANY USERSADD INSTANCESADD HARDWAREOPTIMIZE DATA MODELHOW CAN YOU DELAY USING THESE OPTIONS?|TalkingdataPROBLEM:THE WAITING LINE TO QUERY DATAThe queue means a user wait is extended by each user in front of themUSERSSECONDSCPU|TalkingdataQUERYS BUILDING BLOCKS:THE INSTRUCTION SETS|TalkingdataCROWD SPEED:MACHINE LEARNING ARCHITECTUREBreak each query into partsStore each query part and learn Build new queries with matching parts to boost performanceQUERYEXECUTIONSPEED|TalkingdataRE-USE REPEATING INSTRUCTION SETS ACROSS QUERIES#1HOW MANY UNITS DID WE SELL?New Query#2WHAT WERE THE MONTHLY SALES?Already calculated units sold#3WHO WERE THE TOP SALES REPS EACH MONTH?Already calculated units sold&Monthly breakdown of unitsSimilar but non-identical queries|TalkingdataMACHINE LEARNING BIWith Machine Learning BI,analytics get faster even when queries are not identical.The more questions you throw at it-the more efficient it gets!More users=more queries=faster resultsNo matchMatch found|TalkingdataIN-CHIP=POWER+MACHINE LEARNINGLeverage the unique in-chip cache memory to perform faster than in-memoryWithout the limitation of having to load the entire model into RAMIn-Chip recognizes the CPU specs and applies its unique code to organize the query data in the CPUWhen needed again,that piece of data exists in the CPU cache,which is much faster than RAMIn-Chip machine-learns to fetch the associated compressed result sets in advanceSub-query results pre-loaded into L1 cache as compressed dataDecompressed images of that same data can be moved to the larger,but slower,L2 and L3 caches Decompression operations(read from and write to cache)are extremely fast|TalkingdataIN-CHIP TECHNOLOGYThe best engine beer can buyIn memory columnar execution modeCACHE aware query kernelCACHE awaredecompressionInstruction recycling&learning algorithmsLLVM based compiler with SIMD supportFull 64BIT supportColumnar storage|TalkingdataDataset:120M rows 28GB8 Analytical queries X 50 cyclesAggregationsGroupingTop RankingLarge intermediate results BENCHMARK SETTINGS1 601 401 201 00806040200Test 1:No concurrencyTest 2:Concurrency=2Test 3:Concurrency=MaxTest 1:No concurrencyTest 2:Concurrency=2Test 3:Concurrency=MaxIN-CHIP BI BENCHMARK300%fasterSkylakeHaswellEMPOWERING GROWTH,ANYWHERE,EVERYWHERE,ON AFFORDABLE HW|TalkingdataSPEED!STRATA AWARDAnalyzing 10TB of data in 10 seconds On a single node on a standard Dell Server|TalkingdataREVOLUTION:SCALE-OUT VS IN-CHIPArchitectureUsers Use CasesInterfaceTime to ImplementAvailable ResourcesOutcomeIn-ChipBusiness UsersAd-Hoc AnalyticsInteractive Dashboards,SQLShortSmallAgile Big Data AnalyticsScale-Out Data Scientists,IT,DevelopersETL,Batch Reports,Machine LearningJAVA,R,C,SQLLongBigBig Data Infrastructure|TalkingdataSOWHAT IS IT GOOD FOR?|TalkingdataFROM COMPLEXITYTO SIMPLICITY|TalkingdataTECHNOLOGY HAS NO MEANING IF IT HAS NO IMPACT ON HUMAN LIFE“If a tree falls in a forest and no one is around to hear it,does it make a sound?”|TalkingdataOVERHYPE OF BUZZWORDS|TalkingdataTHE PERSONAL,INTELLIGENT AND CONTEXTUAL WEB|TalkingdataTHE INTERNET OF ME|TalkingdataTRANSFORMATION OF BIG DATA ANALYTICS FOR IOM|TalkingdataWE ARE ALL UNIQUE|TalkingdataLET THERE BE LIGHTS|TalkingdataTHE NEXT REALM OF BUSINESS ANALYTICS Analyzing data no longer requires being anchored to a screen Sisense Everywhere devices broadcast business KPIs to all the senses Making consumption of insights immediate and simple.|TalkingdataHOW IT ALL STARTEDThe relationship between business professionals and their KPIs(We asked hundreds of business professionals how they interact with their data and KPIs)|TalkingdataALMOST HALF OF ALL RESPONDENTS CHECK KPIS DAILYHow often do you check the status of your KPIs?|Talkingdata83%OF RESPONDENTS USE OR WANT TO USE COLOR CODINGDo you use color-coding in the way you display data?|TalkingdataVISUAL ALERTS ARE THE MOST EFFECTIVE,ACCORDING TO MORE THAN HALF OF RESPONDENTSWhich type of alert is best in driving you to action?|TalkingdataACCORDING TO RESPONDENTS THE FUTURE OF BI CONSUMPTION IS EVERYWHEREHow would you like to consume data in the future?|TalkingdataBI EVERYWHERERevolutionizing The Way Business Users Consume Data|TalkingdataIMAGINE A SISENSE WORLDImagine youre driving to work and can ask your voice-operated BI assistant:What is my sales target for today?|TalkingdataIMAGINE A SISENSE WORLDImagine being able to focus your entire team on improving customer satisfaction just by having them glance at the Sisense IoT bulb,green means on target and red means take action.|TalkingdataIMAGINE A SISENSE WORLDImagine stepping into a conference room for a quarterly business review and experiencing your data insights hovering around you.|TalkingdataSISENSE BRINGS IMAGINATION TO LIFESisense-Enabled is a new line of devices that present data unlike any dashboard environmentSISENSE LAMPSISENSE ENABLED ECHO|TalkingdataREDEFINING HOW WE INTERACT WITH DATA“When I see that bulb change,I get a real sense of satisfaction.Its provided a direct way for us to see how data is changing.The bulb gives me peace of mind because I can see a light change rather than monitoring a screen.”LIVE CLOSER TO YOUR DATA“Bulb is the KPI that you dont need to load up on one of your screen,its not just another browser window.Its this physical piece thats simply part of your life.Its a simple product with a powerful way of telling you whether things are going well.”RESPOND TO CHANGES IN REAL-TIME“I think I find it easier to relate to color and sound than a dashboard.I have seen a change in my behavior using these tools,specifically around time to react-understand when something is changing and going to look at metrics to find out why.”|TalkingdataSIMPLIFYING COMPLEX DATA CONSUMPTIONMAINTAIN FOCUSKeep teams focused on a common goal and in touch with your business.GAIN CONSTANT VISIBILITYKnow whats happening,wherever you are,in an instant.STAY CONNECTEDKeep your finger on the pulse and act on whats important.|TalkingdataTHE FUTURE OF ENHANCED HUMANISMTHANKS

    注意事项

    本文(【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf)为本站会员(qq****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开