线性动态电路的复频域分析优秀PPT.ppt
结束21第十四章 线性动态电路的复频域分析主要内容拉普拉斯变换及其与电路分析有关的性质;反变换的方法;KCL、KVL和VCR的运算形式;拉氏变换在线性电路中的应用;网络函数的定义与含义;极点与零点对时域响应的影响;极点与零点与频率响应的关系。结束22重 点基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路(模型);拉普拉斯反变换部分分式展开;应用拉普拉斯变换分析线性电路的方法和步骤;网络函数的的定义和极点、零点的概念。与其它章节的联系1 本章讲述基于拉氏变换的动态电路的分析方法,称为运算法;主要解决一般动态电路、特别是高阶动态电路的分析问题;2 是变换域分析方法(相量法)思想的延续,把时域问题变换为复频域问题。结束2314-1 拉普拉斯变换的定义1.引言拉普拉斯变换法是一种数学积分变换,其核心是把时间函数 f(t)与复变函数 F(s)联系起来,把时域问题通过数学变换化为复频域问题。两个特点:一是把时间域的高阶微分方程变换为复频域的代数方程;二是将电流和电压的初始值自动引入代数方程中,在变换处理过程中,初始条件成为变换的一部分。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。结束241.定义一个定义在 0,+区间的函数 f(t),它的拉普拉斯变换式 F(s)定义为:F(s)=f(t)=0-f(t)e-stdt式中s=s+jw为复数,被称为复频率;F(s)称为f(t)的象函数,f(t)称为F(s)的原函数。由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为:f(t)=-1F(s)=2pj1c-jc+jF(s)est dt式中c为正的有限常数。结束25象函数F(s)存在的条件:Res=s c,一般都存在。(1)定义中拉氏变换的积分从 t=0-开始,即:注意在电气领域中所用到的都是有实际意义的(电压或电流)信号,它们的函数表达式f(t)都存在拉氏变换。F(s)=f(t)=0-f(t)e-stdt=0-0+f(t)e-stdt+0+f(t)e-stdt它计及 t=0-至 0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。(2)象函数 F(s)一般用大写字母表示,如I(s)、U(s),原函数f(t)用小写字母表示,如i(t),u(t)。结束262.典型函数的拉氏变换 P345例14-1(1)单位阶跃函数 f(t)=e(t)F(s)=0-e(t)e-st dt e(t)=s1=0-e-st dt=-s1e-st0-(2)单位冲激函数d(t)F(s)=0-d(t)e-st dt=0-0+d(t)e-st dt=e-s(0)d(t)=1(3)指数函数 f(t)=eat (a为实数)F(s)=0-eat e-st dt=0-e-(s-a)t dt=-(s-a)1e-(s-a)t0-eat=s-a1结束2714-2 拉普拉斯变换的基本性质1.线性性质设:f1(t)=F1(s),f2(t)=F2(s)A1、A2 是两个任意实常数。则:A1 f1(t)+A2 f2(t)=A1F1(s)+A2F2(s)证:左=0-A1 f1(t)+A2 f2(t)e-st dt=A10-f1(t)e-st dt+A20-f2(t)e-st dt=右A1F1(s)A2F2(s)结束28P346 例14-2 若 f1(t)=sin(wt),f2(t)=K(1-e-at)的定义域为0,求其象函数。f1(t)=sin(wt)2j1(ejwt-e-jwt)欧拉公式 线性性质2j1 ejwt-e-jwt 引用 eat =s-a1=2j1s-jw1-s+jw1=s2+w2w f2(t)=K(1-e-at)引用阶跃函数和指数函数的结论=sK-s+aK=s(s+a)Ka K(1-e-at)=线性性质 K-Ke-at解:s(s+a)Ka sin(wt)=s2+w2w结束292.微分性质若 f(t)=F(s),则 f (t)=sF(s)-f(0-)证:f (t)=0-df(t)dte-st dt=0-e-st df(t)=e-st f(t)0-0-f(t)de-st=-f(0-)+s0-f(t)e-st dtF(s)推论:f(n)(t)=snF(s)-sn-1f(0-)-sn-2f(0-)-f(n-1)(0-)特别,当 f(0-)=f(0-)=f(n-1)(0-)=0 时则有 f (t)=sF(s),f(n)(t)=snF(s)该性质可将f(t)的微分方程化为F(s)的代数方程,是分析线性电路(系统)的得力工具。结束210P347 例14-3 用微分性质求cos(wt)和d(t)的象函数。解:dtdsin(wt)=w cos(wt)利用微分性质和已知结果:=d(t)dtde(t)e(t)=1/s,sin(wt)=s2+w2w cos(wt)=w1dtdsin(wt)=w1ss2+w2w-sin(0-)cos(wt)=s2+w2s d(t)=dtde(t)=s(s1-0)=1结束2113.积分性质若 f(t)=F(s)则 0-tf(t)dt=s1F(s)证:设 g(t)=0-tf(t)dt则有g(t)=f(t),且g(0)=0由微分性质 g(t)=s g(t)-g(0)=s g(t)g(t)=s1 g(t)推论:设 f(t)=F(s)则重复应用积分性质可得n重积分的象函数0-tdt0-tdt t0-f(t)dt=sn1F(s)结束212解:f(t)=t=0-te(x)dx t=s1P348 例14-4,求 f(t)=t 的象函数。利用积分性质=s21 tn =sn+1n!e(x)4.延迟性质若 f(t)=F(s),又t0时 f(t)=0则 对任一实数t0有:f(t-t0)=e-st0 F(s)5.卷积性质若f1(t)、f2(t)在t m时,F(s)为真分式;当n=m时,用多项式除法将其化为:F(s)=A+D(s)N0(s)部分分式为真分式时,需对分母多项式作因式分解,求出D(s)=0的根。分三种情况讨论。结束217情况1 D(s)=0只有单根K1、K2、Kn 为待定系数。确定方法如下:F(s)=s-p1K1+s-p2K2+s-pnKnp1、p2、pn 为D(s)=0的n个不同单根,它们可以实数,也可以是(共轭)复数。方法1:按 Ki=limspi(s-pi)F(s)来确定,i=1,2,3,n方法2:用求极限方法确定 Ki 的值。按 Ki=limspi(s-pi)N(s)D(s)=limspi(s-pi)N(s)+N(s)D(s)=D(pi)N(pi)i=1,2,3,n结束218P352 例14-6求 F(s)=的原函数。s3+7s2+10s2s+1解:s3+7s2+10s=0的根分别为:p1=0,p2=-2,p3=-5用Ki=lim(s-pi)F(s)确定系数。spiK1=lim sF(s)s0s0s3+7s2+10s2s+1=0.1=lim sK2=lim(s+2)F(s)s-2s-2=lim(s+2)2s+1s(s+2)(s+5)=0.5K3=lim(s+5)F(s)s-5s-5=lim(s+5)2s+1s(s+2)(s+5)=-0.6f(t)=0.1+0.5e-2t-0.6e-5tF(s)=s0.1+s+20.5+s+5-0.6结束219在情况1中,若D(s)=0有共轭复根 原则上也是上述方法,只是运算改为复数运算:p1=a+jw,p2=a-jwK1=D(a+jw)N(a+jw)K2=D(a-jw)N(a-jw)由于F(s)是实系数多项式之比,故K1、K2必是共轭复数(证明从略),即若 K1=|K1|ejq1,则必有K2=|K1|e-jq1f(t)=K1e(a+jw)t+K2e(a-jw)t=|K1|ejq1 e(a+jw)t+|K1|e-jq1 e(a-jw)t=|K1|eat ej(q1+wt)+e-j(q1+wt)根据欧拉公式得:f(t)=2|K1|eatcos(wt+q1)结束220解:求 s2+2s+5=0的根P353 例14-7 求 F(s)=s2+2s+5s+3的原函数f(t)。p1=-1+j2,p2=-1-j2a=-1,w=2K1=D(-1+j2)N(-1+j2)=0.5-j0.5=0.5 2e-j4p|K1|=0.52q1=-4p代入:f(t)=2|K1|eatcos(wt+q1)得4f(t)=2e-t cos(2t-p)结束221情况2:如果D(s)=0有q重根(设p1有q重根)。则D(s)中含有(s-p1)q 的因式,F(s)的展开式为系数Ki+1的求法同上,K11 K1q 的确定:F(s)=(s-p1)qK11+(s-p1)q-1K12+s-p1K1q+i=1n-qs-pi+1Ki+1K11=limsp1(s-p1)q F(s)K12=limsp1dsd(s-p1)q F(s)K1q=(q-1)!1limsp1dsq-1dq-1(s-p1)q F(s)f(t)=(q-1)!K11t q-1+(q-2)!K12t q-2+K1qe p1t+i=1n-qKi+1e pi+1t结束222P354例14-8 求 F(s)=求K21、K22的方法相同:解:的原函数。s2(s+1)31(s+1)3 F(s)=s21s2 F(s)=(s+1)31K1q=(q-1)!1limsp1dsq-1dq-1(s-p1)q F(s)K11=1lims-1s21K12=2lims-1dsds21K13=3lims-1ds2d2s21K21=1lims0(s+1)31K22=-3lims0dsd(s+1)31f(t)=2!1t2e-t+2te-t+3e-t+t-32!1结束22314-4 运算电路用拉氏变换求解线性电路的方法称为运算法。运算法的思想是:首先找出电压、电流的像函数表示式,而后找出 R、L、C 单个元件的电压电流关系的像函数表示式,以及基尔霍夫定律的像函数表示式,得到用像函数和运算阻抗表示的运算电路图,列出复频域的代数方程,最后求解出电路变量的象函数形式,通过拉氏反变换,得到所求电路变量的时域形式。显然运算法与相量法的基本思想类似,因此,用相量法分析计算正弦稳态电路的那些方法和定理在形式上均可用于运算法。结束2241.KL的运算形式对KL的时域形式取拉氏变换并应用其线性性质可得KL在复频域中的运算形式:2.VCR的运算形式R+-u(t)i(t)i(t)=i(t)=I(s)=0 u(t)=u(t)=U(s)=0(1)电阻R时域形式:u(t)=Ri(t)运算形式:U(s)=RI(s)R+-U(s)I(s)运算电路结束225(2)电感L时域形式 u(t)=L取拉氏变换并应用线性和微分性质sL+-U(s)I(s)+-Li(0-)+-U(s)I(s)sL1i(0-)sdt di(t)得运算形式:U(s)=sLI(s)-Li(0-)sL称为L的运算阻抗i(0-)为L的初始电流或者写为:I(s)=sL1U(s)+由上式得电感L的运算电路如图。L+-u(t)i(t)1/sL称为运算导纳si(0-)结束226(3)电容C取拉氏变换并应用线性和积分性质时域形式:U(s)=sC1I(s)+su(0-)1/sC称为C的运算阻抗。+-U(s)I(s)+-sC1u(0-)su(t)=C10-ti(t)dt+u(0-)得运算形式:C+-u(t)i(t)或者写为:I(s)=sCU(s)-Cu(0-)sC为C的运算导纳。u(0-)为C的初始电压。运算电路如图。+-U(s)I(s)sCCu(0-)结束227(4)耦合电感U1(s)=sL1I1(s)-L1i1(0-)+sMI2(s)-Mi2(0-)U2(s)=sL2I2(s)-L2i2(0-)+sMI1(s)-Mi1(0-)u1=L1dtdi1+Mdtdi2-+sM+-sL1sL2I1(s)I2(s)U1(s)U2(s)-+L1i1(0-)Mi2(0-)+-L2i2(0-)+-Mi1(0-)-+M+-L1L2i1(t)i2(t)u1(t)u2(t)u2=L2dtdi2+Mdtdi1电压电流关系为 两边取拉氏变换,得耦合电感 VCR的运算形式。由运算形式得耦合电感的运算电路图 结束228(5)运算电路模型L+-u(t)i(t)CRS+-sL+-U(s)I(s)RS+-+-Li(0-)+-u(0-)ssC1设电容电压的初值为u(0-)电感电流的初值为 i(0-)时域方程为 u=Ri+L didt+1C0-ti dt取拉氏变换得U(s)=RI(s)+sLI(s)-Li(0-)+sC1I(s)-su(0-)(R+sL+sC1由上式得运算电路。)I(s)=Z(s)I(s)=U(s)+Li(0-)+su(0-)结束229Z(s)=(R+sL+sL+-U(s)I(s)RS+-+-Li(0-)+-u(0-)ssC1sC1)称运算阻抗 运算电路实际是:电压、电流用象函数形式;元件用运算阻抗或运算导电容电压和电感电流初始值用附加电源表示。纳表示;友情提示 运算法可直接求得全响应;用 0-初始条件,跃变情况自动包含在响应中。结束23014-5 应用拉氏变换法分析线性电路相量法由电阻电路推广而来,运算法也是。所以运算法的分析思路与相量法非常相似:推广时引入拉氏变换和运算阻抗的概念:i I(s)u U(s)R Z(s)G Y(s)用运算法分析动态电路的步骤:求初始值;将激励变换成象函数;画运算电路(注意附加电源的大小和方向);用电阻电路的方法和定理求响应的象函数;求原函数得时域形式的表达式。结束231P359 例14-9 电路处于稳态。t=0时S闭合,求i1(t)。解:求初值:iL(0-)=0,UC(0-)=US=1V求激励的象函数:US=1=1/s画运算电路:用回路电流法求响应的象函数:+-Usi1(t)R1SCR2(t=0)L1W1V1F1W1HIa(s)Ib(s)Ia(s)-Ib(s)=0Ia(s)+I1(s)=Ia(s)=s(s2+2s+2)1求原函数:I1(s)=(1+e-t cost-e-t sint)A1+s+s1s1-s1+-+-I1(s)11ss1s1s1211+s1Ib(s)=s1结束232P361 例14-11 稳态时闭合S。求 t0时的 uL(t)。由结点电压法UL(s)=Un1(s)5W+-us1iL(t)R1S(t=0)LR2+-us2+-uL2e2t V5V5W1H解:iL(0-)=1AUn1(s)=5s2s+5Un1(s)=5(s+2)2=(s+2)(2s+5)2s UL(s)=(-4e2t+5e2.5t)Vus2R2+-5Ws+-+-UL(s)+-1V5Ws+225s51+51+s15(s+2)2+5s5-s1 2e2t =s+22 5 =5s结束233P362 例14-12 求S闭合时的 i1(t)和i2(t)。解:根据运算电路列回路电流方程(R1+sL1)I1(s)-sMI2(s)=(1/s)-sMI1(s)+(R2+sL2)I2(s)=0代入数据(1+0.1s)I1(s)-0.05sI2(s)=(1/s)-0.05sI1(s)+(1+0.1s)I2(s)=0取反变换-+sMsL1sL2I1(s)I2(s)R1R2s1-+ML1L2i1(t)i2(t)u1(t)R1SR21W1W1V0.1H0.05H0.1HI1(s)=s(7.5103s2+0.2s+1)0.1s+1I2(s)=s(7.5103s2+0.2s+1)0.05i1(t)=(1-0.5e-6.67t-0.5e-20t)Ai2(t)=0.5(0.5e-6.67t-e-20t)A解方程结束234P363 例14-13 电路处于稳态时打开S。求i(t)和电感元件电压。解:10=(10/s),iL1(0-)=5A,L1iL1(0-)=1.5VuL1(t)=-6.56e-12.5t-0.375d(t)VuL2(t)=-2.19e-12.5t+0.375d(t)VL1-+L2i(t)Us=10VR1SR22W3W0.3H0.1H-+0.3s0.1sI(s)102W3Ws-+1.5V+-UL1(s)+-UL2(s)I(s)=2+3+(0.3+0.1)ss10+1.5=s(0.4s+5)(1.5s+10)=s2+s+12.51.75i(t)=(2+1.75e-12.5t)AUL1(s)=0.3sI(s)-1.5=-s+12.56.56-0.375UL2(s)=0.1sI(s)=-s+12.52.19-0.375结束235iL1(0-)=5Ai(t)=(2+1.75e-12.5t)AuL1(t)=-6.56e-12.5t-0.375d(t)VuL2(t)=-2.19e-12.5t+0.375d(t)V S打开瞬间iL1(0+)=3.75A所以,当分析iL(t)或uC(t)有跃变情况的问题时,运算法不易出错。L1-+L2i(t)Us=10VR1SR22W3W0.3H0.1H-+0.3s0.1sI(s)102W3Ws-+1.5V+-UL1(s)+-UL2(s)电流发生了跃变。uL1(t)、uL2(t)中将出现冲激电压。但uL1(t)+uL2(t)无冲激,回路满足KVL。可见拉氏变换已自动把冲激函数计入在内。结束236加e(t)后再求导,也会产生错误结果。因为e(t)的起始性把函数定义成 t0时为0。所以当电压或电流不为0时,一般不能在表达式中随意加e(t)。本例在求出i(t)后,不要轻易采用对i(t)求导的方法计算uL1(t)和uL2(t),这会丢失冲激函数项。提示iL1(0-)=5Ai(t)=(2+1.75e-12.5t)AuL1(t)=-6.56e-12.5t-0.375d(t)VuL2(t)=-2.19e-12.5t+0.375d(t)VL1-+L2i(t)Us=10VR1SR22W3W0.3H0.1H-+0.3s0.1sI(s)102W3Ws-+1.5V+-UL1(s)+-UL2(s)结束237经典法有一定的局限性。若要求用三要素法求解,则按磁链不变原则有:L1iL1(0-)+L2iL2(0-)=(L1+L2)i(0+)i(0+)=L1-+L2i(t)Us=10VR1SR22W3W0.3H0.1HL1+L2L1iL1(0-)+L2iL2(0-)=0.3+0.10.35+0=3.75Ai()=2+310=2At=2+30.3+0.1=12.51s代入三要素公式得:i(t)=2+(3.75-2)e-12.5t A i(t)ot245(t0+)结束238为表示t0-的情况i(t)=5-5e(t)+(2+1.75e-12.5t)e(t)A,(t0-)此时:uL1(t)=L1dtdi(t)=-6.56e-12.5t-0.375d(t)Vi(t)=2+(3.75-2)e-12.5t A i(t)ot245i(0-)=iL1(0-)=5AL1-+L2i(t)Us=10VR1SR22W3W0.3H0.1H结束23914-6 网络函数的定义1.网络函数的定义 若电路在单一独立源激励下,其零状态响应r(t)的象函数为R(s),激励e(t)的象函数为E(s),则该电路的网络函数H(s)定义为R(s)与E(s)之比。2.网络函数的类型 即 H(s)delE(s)R(s)H(s)可以是驱动点阻抗、导纳;根据激励E(s)与响应R(s)所在的端口:无源网络I1(s)+-+-ZLI2(s)U2(s)U1(s)电压转移函数、电流转移函数;转移阻抗、转移导纳。结束240注意 若激励 E(s)=1,即e(t)=d(t),则响应 R(s)=H(s)E(s)=H(s)。h(t)=-1H(s)=-1R(s)=r(t)说明网络函数的原函数为电路的单位冲激响应。或者说,如果已知电路某一处的单位冲激响应 h(t),就可通过拉氏变换得到该响应的网络函数网络函数仅与网络的结构和电路参数有关,与激励的函数形式无关。因此,如果已知某一响应的网络函数H(s),它在某一激励 E(s)下的响应 R(s)就可表示为R(s)=H(s)E(s)结束241P366例14-15 已知激励 is=d(t)求冲激响应 h(t)=uc(t)解:激励与响应属同一端口is+-ucGCH(s)=E(s)R(s)=Is(s)Uc(s)=Z(s)为驱动点阻抗。Z(s)=G+sC1=C1 s+RC11h(t)=uc(t)=-1H(s)=C1e(t)eRCt-结束242P366 例14-16已知低通滤波器的参数当激励是电压u1(t)时,求电压转移函数和驱动点导纳函数。1.5H0.5H1WI1(s)I2(s)+-+-u2(t)C2u1(t)L1L3i2(t)i1(t)R34F解:用回路电流法)I1(s)I2(s)=U1(s)(sL1+sC21sC21-I1(s)=0-sC21+sC21+R)I2(s)(sL3+解方程得:I1(s)=D(s)L3C2s2+RC2s+1U1(s)I2(s)=D(s)1U1(s)结束243式中:D(s)=L1L3C2 s3+RL1C2 s2+(L1+L2)s+R代入数据:D(s)=s3+2s2+2s+1I1(s)=D(s)L3C2s2+RC2s+1U1(s)I2(s)=D(s)1U1(s)1.5H0.5H1W+-+-u2(t)C2u1(t)L1L3i2(t)i1(t)R34F电压转移函数为:U2(s)=RI2(s)=I2(s)H1(s)=U2(s)U1(s)=D(s)1=s3+2s2+2s+11驱动点导纳函数为:H1(s)=I1(s)U1(s)=3(s3+2s2+2s+1)2s2+4s+3结束24414-7 网络函数的极点和零点由于H(s)定义为响应与激励之比,所以H(s)只与(网络)电路参数有关。在H(s)中不会包含激励的象函数。对于由 R、L(M)、C和受控源组成的电路来说,H(s)是s的实系数有理函数,其分子、分母多项式的根或是实数或是(共轭)复数。1.H(s)的一般形式H(s)=D(s)N(s)=ansn+an-1sn-1+a0bmsm+bm-1sm-1+b0结束245写成H(s)=D(s)N(s)=H0(s-p1)(s-p2)(s-pj)(s-pn)(s-z1)(s-z2)(s-zi)(s-zm)=H0Pj=1n(s-pj)Pi=1m(s-zi)H0为常数z1、z2、zm是N(s)=0的根,当 s=zi 时,H(s)=0,称之为网络函数的零点;p1、p2、pm是D(s)=0的根,当 s=pi 时,H(s),称之为网络函数的极点。结束2462.网络函数的零、极点分布图 在s平面上,H(s)的零点用“”表示,极点用“”表示。这样就可以得到网络函数的零、极点分布图。的零、极点图。osjw s 平面 24-2-4-1-212s3+4s2+6s+32s2-12s+16解:对分子作因式分解2(s2-6s+8)=2(s-2)(s-4)对分母作因式分解(s+1)(s2+3s+3)例:求H(s)=(s+1)s+23+j23s+23-j23结束24714-8 极点、零点与冲激响应根据H(s)的定义可知,电路的零状态响应为:D(s)N(s)Q(s)P(s)R(s)=H(s)E(s)=H(s)、E(s)的分子和分母都是s的多项式,D(s)Q(s)=0 的根将包含D(s)=0 和Q(s)=0 的根。Q(s)=0 的根与激励有关,属强制分量。D(s)=0 的根只与网络(电路)参数有关,是自由分量。根据冲激响应过程可知,h(t)中只有自由分量,而h(t)=-1H(s)。所以,分析H(s)的零、极点与冲激响应的关系,就能预见时域响应的特点。结束248设H(s)为真分式,且分母D(s)=0只有单根,则冲激响应h(t)=-1H(s)=-1sjwos平面pitopitopipi*totopipipi*toPi 仅由网络的结构及元件值确定。i=1ns-piKi =i=1nKi e pi t结束249归纳如下:sjwos平面pitopitopipi*totopipipi*to若所有极点 全部在左半 s 平面,则电路(或系统)是稳定的。只要有一个极点pi在右半 s 平面,电路(或系统)不稳定。若极点在虚轴上,为临界稳定状态。若极点在实轴上,则响应按指数衰减或增长。(单调变化)若极点不在实轴上,一般为共轭复数,则响应为正弦振荡:衰减振荡,或增幅振荡,或等幅振荡。结束250P371 例14-18根据H(s)的极点分布情况分析uC(t)的变化规律。解:US(s)为激励,UC(s)为响应,H(s)=UC(s)/US(s)为电压转移函数:C+-uC+-RLuS(t=0)SI(s)UC(s)=I(s)=R+sL+sC1US(s)sC1=s2LC+sRC+1US(s)H(s)=LC1(s-p1)(s-p2)1sC1式中p1、p2分别为:p1=-2LR+2LR2-LC1p2=2LR-2LR2-LC1结束251(1)当0jwsop1p2-djwd p2p1p1=-2LR+2LR2-LC1p2=2LR-2LR2-LC12LRd=LCw0=1d 2+w0wd=2R 2极点位于负实轴上p1p2jwsop1=-2LR+2LR2-LC1p2=2LR-2LR2-LC12LRd=LCw0=1d 2+w0wd=2LCuC(t)的自由分量为两个衰减速度不同的指数项。极点离原点越远,衰减越快。uC(t)中的强制分量取决于激励。以上根据H(s)的极点分布情况,定性地分析uC(t)的变化规律。结束25314-9 极点、零点与频率响应令网络函数H(s)中复频率 s=jw,分析H(jw)随w 变化的情况,就可预见相应的网络函数在正弦稳态情况下随 w 变化的特性,H(jw)是一个复数。H(jw)=|H(jw)|j(jw)|H(jw)|为网络函数在频率w处的模值,|H(jw)|随w 变化的关系为幅度频率响应,简称幅频特性;j(jw)为相位频率响应,简称相频特性。由于H(jw)=H0Pj=1n(jw-pj)Pi=1m(jw-zi)结束254所以幅频特性具体分析方法(1)公式计算 若已知网络函数的零点、极点,则可以通过公式计算频率响应。(2)作图法 定性描绘频率响应曲线。Bode图;几何求法。举例如下:|H(jw)|=H0Pj=1n|(jw-pj)|Pi=1m|(jw-zi)|相频特性j(jw)=Si=1marg(jw-zi)-Sj=1narg(jw-pi)=ji-Si=1mSi=1mqi结束255例14-19 定性分析RC串联电路的频率特性,u2为输出。解:(1)写频率特性表达式H(jw)=.U1(jw).U2(jw)=jw+RC1RC1+-u1+-u2RC为电压转移函数。幅频特性:|H(jw)|=jw+H0RC1相频特性:j(jw)=0-q(jw)=-arctg(wRC)(2)为绘制频率特性曲线,需要求若干个点:w=0:|H(j0)|=1j(j0)=0;w=wC=RC1|H(jwC)|=21j(jwC)=-45o;w:|H(j)|=0j(j)=-90o。结束256用几何求法再算几个点:|H(jw)|=H0osjwjw1M1q1jw2M2q2jw3M3q3jw+RC1RC1j(jw)=-q(w)=-arctg(wRC)=M(w)H0作图求M(w)和q(w)w=w1:|H(jw1)|=H0/M1j(jw1)=-q1w=w2:|H(jw2)|=H0/M2j(jw2)=-q2w=w3:|H(jw3)|=H0/M3j(jw3)=-q3幅频特性|H(jw)|ow10.5w1w2wCw321H0/M1H0/M1H0/M2结束257wC 称为截止频率。或转折频率。该电路具有低通特性,通频带为wC-0=wC。wC =RC1采用几何求法,要按比例画图,然后量长度M(w)和测角度q(w)。此法虽不精确,但不用计算。当需要较准的曲线时,应多求一些点。幅频特性|H(jw)|ow10.5w1w2wCw321wCw1w2j(jw)ow-90ow3-45o相频特性q1q3q2结束258例14-20 RLC串联电路的电压转移函数H(s)=解:引用P371 例14-18的结果C+-u2+-RLu1U2(s)U1(s)H(s)=LC1(s-p1)(s-p2)1=(s-p1)(s-p2)H0,试根据其零、极点定性绘出H(jw)。为分析频率特性,令s=jw得H(jw)=(jw-p1)(jw-p2)H0式中无零点,极点为:只讨论极点是一对共轭复数的情况。p1,2=-2LR2LR2-LC1结束259一对共轭复数极点为:p1=-d+jwd,p2=-d-jwd幅频特性表达式:相频特性表达式:j(jw)=-(q1+q2)|H(jw)|=|jw-p1|jw-p2|H0=M1(w)M2(w)H0M1M2q2q1-jwdjwd-djwsop1p2w=w1:|H(jw1)|=M1 M2 H0j(jw1)=-(-q1+q2)w=w2,。用几何求法的作图过d、wd、w0 与电路参数的关系同前。jw1程,与例14-19相同,不再重复。结束260 主导极点的概念对频率特性影响最大,或者说起主要作用的极点。一对共轭复数极点靠近虚轴,且周围无零点,其它极点与虚轴的距离大于这对极点5倍以上。那么靠近虚轴的这对共轭复数极点对频率特性影响大。jws-d1M3M1w1p1p2w=0z1p3p4-d2M4M2N1|H(jw1)|=M1 M2 M3M4N1|j(jw1)|=j1-(q1+q2+q3+q4)从图中看出,当w变化时,对M1、M2和q1、q2的影响较大,而影响最大的是M1和q1。结束261 极点的品质因数Qp当极点为一对共轭复数时Qpdefd=2dw0d 2+w2d21jwso-jwdjwdp1p2-d是RLC串联谐振回路的品质因数。本例:d=2LRw0=LC1即极点到坐标原点的距离与极点实部之比的一半。代入上式得Qp=R1CL=Q对频率特性的影响参见第十一章。结束2627-9 卷积积分一、卷积的概念若已知函数 f1(t),f2(t),则积分称为函数f1(t)与 f2(t)的卷积,记作:f1(t)*f2(t)。卷积符合交换律:f1(t)*f2(t)=f2(t)*f1(t)也符合分配律:f1(t)*f2(t)+f3(t)=f1(t)*f2(t)+f1(t)*f3(t)-+f1(x)f2(t-x)dx结束263例:若 f1(t)=e(t),f2(t)=求 f1(t)*f2(t)。解:按卷积的定义有 按 f2(t)*f1(t)也能得到上述结果。0,t 0e-t,t 0f1(t)*f2(t)=-+f1(x)f2(t-x)dxf1(x)xo1f2(t-x)xo1tf1(x)f2(t-x)0的区域为0,tf1(t)*f2(t)=0t1 e-(t-x)dx=e-t0tex dx=e-t(et-1)=1-e-tf1(x)是单位阶跃函数,且(t-x)0,即xt 时0f2(t-x)=e-(t-x)结束264拉氏变换的象原函数只需在 t0 内有定义,因此若f1(t)与 f2(t)都满足条件:当t0 时,f1(t)=f2(t)=0则在电路分析中遇到的函数都满足上述条件,所以它们的卷积都按下式计算:f1(t)*f2(t)=-+f1(x)f2(t-x)dx=-0f1(x)f2(t-x)dx+0tf1(x)f2(t-x)dx+t+f1(x)f2(t-x)dxx 0,f1(x)=0 0t-x t,f2(t-x)=0 0=f1(t)*f2(t)=0tf1(x)f2(t-x)dx结束265二、拉氏变换的卷积定理设 f1(t)与 f2(t)的象函数分别为F1(s)和F2(s)则 f1(t)*f2(t)的拉氏变换一定存在,且 f1(t)*f2(t)=F1(s)F2(s)-1 F1(s)F2(s)=f1(t)*f2(t)在应用拉氏变换分析电路时,这一性质起十分重要的作用。可以利用它求网络响应:R(s)=E(s)H(s)r(t)=-1E(s)H(s)=0te(x)h(t-x)dxe(t)为任意激励的时间函数形式。h(t-x)为网络的冲激响应。可以交换 e(t-x)h(x)结束266例14-7 已知激励 is(t)=2e-t mA求零状态响应 uC(t)。解:根据P149表6-2可知电路的冲激响应为:代入数据得:h(t)=106 e-2t uC(t)=-1IS(s)H(s)应用卷积定理求反变换is(t)RC+-uC500k1mFuC(t)=0tis(x)h(t-x)dx=0t 210-6 e-x106 e-2(t-x)dxe-xe-2t e 2x dx ex dx=2e-2t(et-1)=2(e-t-e-2t)e(t)Vh(t)=C1eRCt-=20t=2e-2t 0t结束267利用卷积定理求拉氏反变换的例子主要是这几步的变换。若求f(t)。解:f(t)=-1=cost*costcosx cos(t-x)dxcost+cos(2x-t)dx(tcost+sint)F(s)=(s2+1)2s2F(s)=s2+1ss2+1ss2+1ss2+1s0t=210t=21结束268本章结束