空间两点间的距离公式》课件3北师大版必修2ash.pptx
-
资源ID:97830182
资源大小:4.17MB
全文页数:28页
- 资源格式: PPTX
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
空间两点间的距离公式》课件3北师大版必修2ash.pptx
添加副添加副标题空空间两点两点间的距离公式的距离公式汇报人:人:C C O ON N T T E E N N T T S S 目目录02两点间的距离公式04公式的应用场景01添加目录标题03公式中的符号含义05公式的扩展形式0101添加章添加章节标题0202两点两点间的距离公式的距离公式公式推公式推导l两点间的距离公式:d=sqrt(x2-x1)2+(y2-y1)2)l推导过程:假设有两个点A(x1,y1)和B(x2,y2),求两点间的距离l距离公式的推导:利用勾股定理,将两点间的距离分解为x轴和y轴上的距离l公式应用:在物理、数学、工程等领域广泛应用公式公式应用用l计算两点间的直线距离l计算两点间的曲线距离l计算两点间的球面距离l计算两点间的空间距离公式理解公式理解两点间的距离公式:d=sqrt(x2-x1)2+(y2-y1)2)公式含义:计算两点之间的直线距离公式应用:物理、数学、工程等领域公式推导:基于勾股定理和向量运算公式公式记忆公式的用途:计算空间两点间的距离两点间的距离公式:d=sqrt(x2-x1)2+(y2-y1)2)公式中的参数:x1,y1表示第一个点的坐标,x2,y2表示第二个点的坐标公式的推导:利用勾股定理和向量运算推导得出0303公式中的符号含公式中的符号含义符号符号说明明:表示角度d:表示两点间的距离r:表示半径:表示圆周率,约等于3.14159符号符号应用用d:表示两点间的距离r:表示半径:表示角度:表示圆周率:表示平方根2:表示常数2d:表 示 两 点 间 的 距 离r:表 示 半 径:表 示 角 度:表 示 圆 周 率2:表 示 平 方:表 示 平 方 根:表 示 乘 积:表 示 求 和:表 示 积 分:表 示 正 比 关 系:表 示 因 为:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以符号含符号含义理解理解d:表 示 两 点 间 的 距 离r:表 示 半 径:表 示 角 度:表 示 圆 周 率2:表 示 平 方:表 示 平 方 根:表 示 乘 积:表 示 正 比 关 系:表 示 因 为:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以:表 示 所 以符号符号记忆0404公式的公式的应用用场景景平面几何中的平面几何中的应用用判断两点是否在同一平面上计算三角形的面积计算两点间的距离判断两点是否在同一直线上解析几何中的解析几何中的应用用计算两点间的距离计算线段的长度计算曲线的长度计算曲面的面积向量中的向量中的应用用l向量加法:用于计算两个向量的和l向量减法:用于计算两个向量的差l向量点积:用于计算两个向量的夹角l向量叉积:用于计算两个向量的法向量空空间几何中的几何中的应用用确定空间物体的位置和方向测量两点间的距离计算三角形、四边形等几何图形的面积解决空间几何问题,如立体几何、解析几何等0505公式的公式的扩展形式展形式两点两点间的距离公式的的距离公式的扩展形式展形式欧几里得空间:两点间的距离公式为d=sqrt(x2-x1)2+(y2-y1)2+(z2-z1)2)非欧几里得空间:两点间的距离公式为d=sqrt(x2-x1)2+(y2-y1)2+(z2-z1)2+.+(n2-n1)2)球面空间:两点间的距离公式为d=arccos(x2-x1)2+(y2-y1)2+(z2-z1)2)/(2*sqrt(x22+y22+z22)双曲空间:两点间的距离公式为d=ln(x2-x1)2+(y2-y1)2+(z2-z1)2)/(2*sqrt(x22+y22+z22)空间两点间的距离公式:d=sqrt(x2-x1)2+(y2-y1)2+(z2-z1)2)扩展形式:d=sqrt(x2-x1)2+(y2-y1)2+(z2-z1)2+(w2-w1)2)推导过程:a.假设空间中有四个点,分别为(x1,y1,z1,w1)和(x2,y2,z2,w2)b.计算这四个点之间的距离,使用空间两点间的距离公式c.将计算结果与扩展形式进行比较,发现扩展形式可以更准确地描述空间中四个点之间的距离d.因此,扩展形式是空间两点间的距离公式的推广,可以应用于更复杂的空间问题a.假设空间中有四个点,分别为(x1,y1,z1,w1)和(x2,y2,z2,w2)b.计算这四个点之间的距离,使用空间两点间的距离公式c.将计算结果与扩展形式进行比较,发现扩展形式可以更准确地描述空间中四个点之间的距离d.因此,扩展形式是空间两点间的距离公式的推广,可以应用于更复杂的空间问题扩展形式的推展形式的推导过程程扩展形式的展形式的应用用场景景计算两点间的直线距离计算两点间的球面距离计算两点间的空间距离计算两点间的曲线距离扩展形式的展形式的记忆方法方法记住基本公式:d=sqrt(x2-x1)2+(y2-y1)2)理解公式的含义:计算两点间的直线距离扩展到三维空间:d=sqrt(x2-x1)2+(y2-y1)2+(z2-z1)2)记住公式的适用范围:适用于二维和三维空间中的两点间距离计算感感谢您的耐心您的耐心观看看汇报人:人: