欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    5-2024年江苏省苏州市中考数学试卷.doc

    • 资源ID:98027038       资源大小:1.59MB        全文页数:34页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    5-2024年江苏省苏州市中考数学试卷.doc

    2024年江苏省苏州市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上1(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A3B1C2D32(3分)下列图案中,是轴对称图形的是()ABCD3(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”数据“2470000000000”用科学记数法可表示为()A2.47×1010B247×1010C2.47×1012D247×10124(3分)若ab1,则下列结论一定正确的是()Aa+1bBa1bCabDa+1b5(3分)如图,ABCD,若165°,2120°,则3的度数为()A45B55°C60°D65°6(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A甲、丁B乙、戊C丙、丁D丙、戊7(3分)如图,点A为反比例函数y(x0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y(x0)的图象交于点B,则的值为()ABCD8(3分)如图,矩形ABCD中,AB,BC1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()ABC2D1二、填空题:本大题共8小题,每小题3分,共24分把答案直接填在答题卡相对应的位置上9(3分)计算:x3x2 10(3分)若ab+2,则(ba)2 11(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 12(3分)如图,ABC是O的内接三角形,若OBC28°,则A °13(3分)直线l:yx1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是 14(3分)铁艺花窗是园林设计中常见的装饰元素如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是ABO的内心,若AB2,则花窗的周长(图中实线部分的长度) (结果保留)15(3分)二次函数yax2+bx+c(a0)的图象过点A(0,m),B(1,m),C(2,n),D(3,m),其中m,n为常数,则的值为 16(3分)如图,ABC中,ACB90°,CB5,CA10,点D,E分别在AC,AB边上,AEAD,连接DE,将ADE沿DE翻折,得到FDE,连接CE,CF若CEF的面积是BEC面积的2倍,则AD 三、解答题:本大题共11小题,共82分把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔17(5分)计算:|4|+(2)018(5分)解方程组:19(6分)先化简,再求值:(+1)÷,其中x320(6分)如图,ABC中,ABAC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E(1)求证:ABDACD;(2)若BD2,BDC120°,求BC的长21(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为 ;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率(请用画树状图或列表等方法说明理由)22(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个珠类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图中的条形统计图补充完整(画图并标注相应数据);(2)图中项目E对应的圆心角的度数为 °;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数23(8分)图是某种可调节支撑架,BC为水平固定杆,竖直固定杆ABBC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB10cm,BC20cm,AD50cm(1)如图,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图,当活动杆AD绕点A由水平状态按逆时针方向旋转角度,且tan(为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号)24(8分)如图,ABC中,ACBC,ACB90°,A(2,0),C(6,0),反比例函数y(k0,x0)的图象与AB交于点D(m,4),与BC交于点E(1)求m,k的值;(2)点P为反比例函数y(k0,x0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PMAB,交y轴于点M,过点P作PNx轴,交BC于点N,连接MN,求PMN面积的最大值,并求出此时点P的坐标25(10分)如图,ABC中,AB4,D为AB中点,BACBCD,cosADC,O是ACD的外接圆(1)求BC的长;(2)求O的半径26(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2 从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t75),已知v1240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25t150),若|d1d2|60,求t的值27(10分)如图,二次函数yx2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(1,0),B(3,0)(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧)当PQMP+QN时,求点P的坐标;(3)如图,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AFAD,交图象C2于点F,连接EF,当EFAD时,求图象C2对应的函数表达式2024年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上1(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A3B1C2D3【分析】根据|3|3,|1|1,|2|2,|3|3,而321,可知1与原点距离最近【解答】解:|3|3,|1|1,|2|2,|3|3,而321,1与原点距离最近,故选:B【点评】本题考查的是数轴,熟练掌握数轴上点的分布特点是解题的关键2(3分)下列图案中,是轴对称图形的是()ABCD【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【解答】解:B,C,D选项中的图形不都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的两条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”数据“2470000000000”用科学记数法可表示为()A2.47×1010B247×1010C2.47×1012D247×1012【分析】将一个数表示成a×10n的形式,其中1|a|10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案【解答】解:24700000000002.47×1012,故选:C【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键4(3分)若ab1,则下列结论一定正确的是()Aa+1bBa1bCabDa+1b【分析】根据不等式的基本性质逐项判定即可【解答】解:若ab1,不等式两边加1可得a+1b,故A不合题意,D符合题意,根据ab1,得不到a1b,ab,故B、C不符合题意故选:D【点评】本题考查不等式的性质,不等式的基本性质:(1)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变5(3分)如图,ABCD,若165°,2120°,则3的度数为()A45B55°C60°D65°【分析】根据“两直线平行,同位角相等”求出ACD65°,再根据三角形外角性质求解即可【解答】解:ABCD,165°,ACD165°,2ACD+3,2120°,355°,故选:B【点评】此题考查了平行线的性质和三角形的外角性质,熟记平行线的性质是解题的关键6(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A甲、丁B乙、戊C丙、丁D丙、戊【分析】根据中位数的定义解答即可【解答】解:要推出由7个盲盒组成的套装产品,中位数应该是质量由小到大排列的第4个盲盒,序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,选定的6号盲盒和7号盲盒的质量应该一个超过100,另一个低于100,选定的可以是:甲,戊;或乙,丁;或丙,丁,选项中只有:丙,丁,故选:C【点评】本题考查中位数,理解题意,掌握确定中位数的方法是解题的关键7(3分)如图,点A为反比例函数y(x0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y(x0)的图象交于点B,则的值为()ABCD【分析】作AGx轴,BHx轴,可证明AGOOHB,利用面积比等于相似比的平方解答即可【解答】解:作AGx轴,垂足为G,BHx轴,垂足为H,点A在函数y图象上,点B在反比例函数y图象上,SAGO,SBOH2,AOB90°,AOGHBO,AGOOHB,AGOOHB,故选:A【点评】本题考查了反比例函数图象上点的坐标特征,利用相似三角形性质得到相似比是关键8(3分)如图,矩形ABCD中,AB,BC1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()ABC2D1【分析】由勾股定理可求AC的长,由“AAS“可证COFAOE,可得AOCO1,由AGEF,可得点G在以AO为直径的圆上运动,则AG为直径时,AG有最大值为1,即可求解【解答】解:连接AC,交EF于O,四边形ABCD是矩形,ABCD,B90°,AB,BC1,AC2,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,CFAE,ABCD,ACDCAB,又COFAOE,COFAOE(AAS),AOCO1,AGEF,点G在以AO为直径的圆上运动,AG为直径时,AG有最大值为1,故选:D【点评】本题考查了矩形的性质,勾股定理,全等三角形的判定和性质,圆的有关知识,确定点G的运动轨迹是解题的关键二、填空题:本大题共8小题,每小题3分,共24分把答案直接填在答题卡相对应的位置上9(3分)计算:x3x2x5【分析】根据同底数幂的乘法法则计算即可【解答】解:x3x2x5,故答案为:x5【点评】本题考查同底数幂的乘法,熟练掌握运算法则是解答本题的关键10(3分)若ab+2,则(ba)24【分析】根据ab+2,可以得到ba2,然后代入所求式子计算即可【解答】解:ab+2,ba2,(ba)2(2)24,故答案为:4【点评】本题考查代数式求值,熟练掌握运算法则是解答本题的关键11(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 【分析】根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,根据概率公式可知,指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,计算即可【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:【点评】本题考查的是几何概率,三角形的面积和多边形的对角线,熟练掌握概率的计算是解题的关键12(3分)如图,ABC是O的内接三角形,若OBC28°,则A62°【分析】连接OC,利用等腰三角形的性质,三角形内角和定理求出BOC的度数,然后利用圆周角定理求解即可【解答】解:连接OC,OBOC,OBC28°,OCBOBC28°,BOC180°OCBOBC124°,故答案为:62【点评】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,属于简单题13(3分)直线l:yx1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是 y【分析】根据题意画出示意图,结合特殊角的三角函数值即可解决问题【解答】解:如图所示,将x0代入yx1得,y1,所以点B坐标为(0,1)将y0代入yx1得,x1,所以点A的坐标为(1,0),所以OAOB1,所以OBAOAB45°由旋转可知,BAC15°,OAC45°+15°60°在RtAOC中,tanOAC,所以OC,则点C的坐标为(0,)令直线l2的函数表达式为ykx+b,则,解得,所以直线l2的函数表达式为y故答案为:y【点评】本题主要考查了一次函数图象与几何变换,能根据题意画出示意图及熟知特殊角的三角函数值是解题的关键14(3分)铁艺花窗是园林设计中常见的装饰元素如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是ABO的内心,若AB2,则花窗的周长(图中实线部分的长度)8(结果保留)【分析】根据正六边形的性质,三角形内心的性质以及直角三角形的边角关系求出所对应的圆心角的度数及半径,由弧长公式求出弧的长,再计算长的6倍即可【解答】解:如图,过点C作CMAB于点M,则AMBMAB,六条等弧所对应的弦构成一个正六边形,中心为点O,AOB60°,OAOB,AOB是正三角形,点O是AOB的内心,CABCBA×60°30°,ACB2AOB120°,在RtACM中,AM,CAM30°,AC2,的长为,花窗的周长为×68故答案为:8【点评】本题考查正多边形和圆,弧长的计算,掌握正六边形的性质,三角形的内心的性质以及直角三角形的边角关系,弧长的计算方法是正确解答的关键15(3分)二次函数yax2+bx+c(a0)的图象过点A(0,m),B(1,m),C(2,n),D(3,m),其中m,n为常数,则的值为 【分析】将A、B、D的坐标代入yax2+bx+c(a0),求出a、b、c,然后把C的坐标代入可得出m、n的关系,即可求解【解答】解:将A(0,m),B(1,m),D(3,m)代入yax2+bx+c(a0),得:,把C(2,n)代入,得:,故答案为:【点评】本题考查了待定系数法求二次函数解析式,掌握方程组的求解是解题的关键16(3分)如图,ABC中,ACB90°,CB5,CA10,点D,E分别在AC,AB边上,AEAD,连接DE,将ADE沿DE翻折,得到FDE,连接CE,CF若CEF的面积是BEC面积的2倍,则AD【分析】设ADx,根据折叠性质得DFADx,ADEFDE,过E作EHAC于H,设EF与AC相交于M,证明AHEACB,得到,进而得到EHx,AH2x,证明RtEHD是等腰直角三角形,得到HDEHED45°,可得FDM90°,证明FDMEHM(AAS),得到,则,根据三角形的面积公式结合已知可得,然后解一元二次方程求解x的值即可【解答】解:,设ADx,ADE沿DE翻折,得到FDE,DFADx,ADEFDE,过E作EHAC于H,设EF与AC相交于M,则AHEACB90°,又AA,AHEACB,CB5,CA10,EHx,则DHAHADxEH,RtEHD是等腰直角三角形,HDEHED45°,则ADEEDF135°,FDM135°45°90°,在FDM和EHM中,FDMEHM(AAS),S255x,CEF的面积是BEC的面积的2倍,则3x240x+1000,解得,x210(舍去),则,故答案为:【点评】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解 答的关键三、解答题:本大题共11小题,共82分把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔17(5分)计算:|4|+(2)0【分析】先化简,然后计算加减法即可【解答】解:|4|+(2)04+132【点评】本题考查实数的运算,熟练掌握运算法则是解答本题的关键18(5分)解方程组:【分析】方程组利用加减消元法求出解即可【解答】解:,得:4y4,即y1,将y1代入得:x3,则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法19(6分)先化简,再求值:(+1)÷,其中x3【分析】先通分括号内的式子,同时将括号外的除法转化为乘法,然后约分即可,最后将x的值代入化简后的式子计算即可【解答】解:(+1)÷,当x3时,原式【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键20(6分)如图,ABC中,ABAC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E(1)求证:ABDACD;(2)若BD2,BDC120°,求BC的长【分析】(1)根据SSS证明三角形全等;(2)证明BEEC,解直角三角形求出BE,可得结论【解答】(1)证明:由作图知:BDCD在ABD 和ACD中,ABDACD(SSS);(2)解:ABDACD,BDC120°,BDACDABDC×120°60°,又BDCD,DABC,BECEBD2,BEBDsinBDA2×,【点评】本题考查作图基本作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题21(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为 ;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率(请用画树状图或列表等方法说明理由)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,再由概率公式求解即可【解答】解:(1)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,抽取的书签恰好1张为“春”,1张为“秋”的概率为【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率所求情况数与总情况数之比22(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个珠类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图中的条形统计图补充完整(画图并标注相应数据);(2)图中项目E对应的圆心角的度数为 72°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数【分析】(1)用C的人数除以所占的百分比求出总人数,再求出D的人数即可补全条形统计图;(2)用360°乘以E的人数所占比例即可;(3)用总人数乘以样本中B的人数所占比例即可得【解答】解:(1)此次调查的总人数为9÷15%60(人),D项目的人数有6061891215(人),补全条形统计图如下:(2)图中项目E对应的圆心角的度数为360°×72°;故答案为:72;(3)800×240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名【点评】本题考查了条形统计图,扇形统计图和用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23(8分)图是某种可调节支撑架,BC为水平固定杆,竖直固定杆ABBC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB10cm,BC20cm,AD50cm(1)如图,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图,当活动杆AD绕点A由水平状态按逆时针方向旋转角度,且tan(为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号)【分析】(1)过点C作CEAD,垂足为E,根据题意可得:ABCE10cm,BCAE20cm,从而可得ED30cm,然后在RtCED中,利用勾股定理进行计算,即可解答;(2)过点D作DFBC,交BC的延长线于点F,交AD于点G,根据题意可得:ABFG10cm,AGBF,AGD90°,然后在RtADG中,利用锐角三角函数的定义可设DG3x cm,则AG4x cm,从而利用勾股定理进行计算可求出AG和DG的长,进而可求出DF和CF的长,最后在RtCFD中,利用勾股定理进行计算,即可解答【解答】解:(1)过点C作CEAD,垂足为E,由题意得:ABCE10cm,BCAE20cm,AD50cm,EDADAE502030(cm),在RtCED中,CD10(cm),可伸缩支撑杆CD的长度为10cm;(2)过点D作DFBC,交BC的延长线于点F,交AD于点G,由题意得:ABFG10cm,AGBF,AGD90°,在RtADG中,tan,设DG3x cm,则AG4x cm,AD5x(cm),AD50cm,5x50,解得:x10,AG40cm,DG30cm,DFDG+FG30+1040(cm),BFAG40cm,BC20cm,CFBFBC402020(cm),在RtCFD中,CD20(cm),此时可伸缩支撑杆CD的长度为20cm【点评】本题考查了解直角三角形的应用,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键24(8分)如图,ABC中,ACBC,ACB90°,A(2,0),C(6,0),反比例函数y(k0,x0)的图象与AB交于点D(m,4),与BC交于点E(1)求m,k的值;(2)点P为反比例函数y(k0,x0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PMAB,交y轴于点M,过点P作PNx轴,交BC于点N,连接MN,求PMN面积的最大值,并求出此时点P的坐标【分析】(1)根据条件先求出点B坐标,再利用待定系数法求出直线AB解析式,将D坐标代入两个函数解析式得到mk的值;(2)先求出PQMQ,再设点P的坐标为(t,),则PQt,PN6t,MQPQt,利用三角形面积列出函数SPMN,利用最值求出t和面积最大值及点P坐标即可【解答】解:(1)A(2,0),C(6,0),AC8又ACBC,BC8ACB90°,点B(6,8)设直线AB的函数表达式为 yax+b,将 A(2,0),B(6,8)代入 yax+b得:,解得,直线AB的函数表达式为 yx+2将点D(m,4)代入yx+2,得 m2D(2,4),将D(2,4)代入反比例函数解析式y得:4,解得k8(2)延长NP交y轴于点Q,交AB于点LACBC,BCA90°,BAC45°,PNx轴,BLNBAC45°,NQM90°,ABMP,MPLBLP45°,QMPQPM45°,QMQP,设点P的坐标为(t,),则PQt,PN6t,MQPQt,SPMN,当t3时,SPMN 有最大值 ,此时P(3,)【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、等腰直角三角形的性质,熟练掌握二次函数顶点式求最值是关键25(10分)如图,ABC中,AB4,D为AB中点,BACBCD,cosADC,O是ACD的外接圆(1)求BC的长;(2)求O的半径【分析】(1)先证明BACBCD,得到,即可解答;(2)过点A作AECD于点E,连接CO,并延长交O于F,连接AF,在RtAED中,通过解直角三角形得到DE1,由BACBCD得到,设CDx,则,CEx1,在RtACE中,根据勾股定理构造方程,求得CD2,由AFCADC得到sinAFCsinADC,根据正弦的定义即可求解【解答】解:(1)BACBCD,BB,BACBCD,D为AB中点,BC216,BC4;(2)过点A作AECD于点E,连接CO,并延长交O于F,连接AF,在RtAED中,DE1,BACBCD,设CDx,则ACx,CEx1,在RtACE中,AC2CE2+AE2,即x2+2x80,解得x2,x4(舍去),CD2,AC,AFC与ADC都是所对的圆周角,AFCADC,CF为O的直径,CAF90°,即O的半径为【点评】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理,掌握各种定理和判定方法是解题的关键26(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 90分钟,从B站到C站行驶了 60分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t75),已知v1240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25t150),若|d1d2|60,求t的值【分析】(1)直接根据表中数据解答即可;(2)分别求出D1001次列车、G1002次列车从A站到C站的时间,然后根据路程等于速度乘以时间求解即可;先求出v2,A与B站之间的路程,G1002次列车经过B站时,对应t的值,从而得出当90t110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,然后分25t90,90t100,100t110,110t150讨论,根据题意列出关于t的方程求解即可【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟, 故答案为:90,60;(2)根据题意得:D1001次列车从A站到C站共需90+60150分钟,G1002次列车从A站到C站共需35+60+30125分钟,150v1125v2, 故答案为:;v14(千米/分钟),v24.8(千米/分钟),4×90360(千米),A与B站之间的路程为360千米,360÷4.875(分钟),当t100时,G1002次列车经过B站,由题意可知,当90t110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,i当25t90时,d1d2,|d1d2|d1d2,4t4.8(t25)60,t75(分钟);当90t100时,d1d2,|d1d2|d1d2,3604.8(t25)60,t87.5(分钟),不合题意,舍去;i当100t110时,d1d2,|d1d2|d2d1,4.8(t25)36060,t112.5(

    注意事项

    本文(5-2024年江苏省苏州市中考数学试卷.doc)为本站会员(yanj****uan)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开