高二数学教案-A 知识讲解 直线与双曲线的位置关系(理).doc
-
资源ID:9884218
资源大小:629.50KB
全文页数:10页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高二数学教案-A 知识讲解 直线与双曲线的位置关系(理).doc
直线与双曲线的位置关系编稿:张希勇 审稿:李霞【学习目标】1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题;3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.【知识网络】【要点梳理】【高清课堂:双曲线的性质 371712一、复习】要点一、双曲线的定义及其标准方程双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.双曲线的标准方程:焦点在x轴上的双曲线的标准方程说明:焦点是F1(-c,0)、F2(c,0),其中c2=a2-b2焦点在y轴上的双曲线的标准方程说明:焦点是F1(0,-c)、F2(0,c),其中c2=a2-b2要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b的值.要点二、双曲线的几何性质标准方程图形性质焦点,焦距范围,对称性关于x轴、y轴和原点对称顶点 轴实轴长=,虚轴长= 离心率渐近线方程要点三、直线与双曲线的位置关系直线与双曲线的位置关系将直线的方程与双曲线的方程联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为.若即,直线与双曲线渐近线平行,直线与双曲线相交于一点;若即,0直线和双曲线相交直线和双曲线相交,有两个交点;0直线和双曲线相切直线和双曲线相切,有一个公共点;0直线和双曲线相离直线和双曲线相离,无公共点直线与双曲线的相交弦设直线交双曲线于点两点,则=同理可得这里的求法通常使用韦达定理,需作以下变形:双曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在双曲线中,以为中点的弦所在直线的斜率;涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.要点四、双曲线的实际应用与最值问题对于双曲线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用双曲线定义,构建参数a,b,c之间的关系,得到双曲线方程,利用方程求解双曲线中的最值问题,按照转化途径主要有以下三种:(1) 利用定义转化(2) 利用双曲线的几何性质(3) 转化为函数求最值【典型例题】类型一:双曲线的方程与性质例1.求下列双曲线的标准方程(1)与椭圆共焦点,且过点(2,)的双曲线;(2)与双曲线有公共焦点,且过点(3,2)的双曲线【解析】(1)椭圆的焦点为(0,±3),所求双曲线方程设为:,又点(2,)在双曲线上,解得a25或a218(舍去)所求双曲线方程为.(2)双曲线的焦点为(±2,0),设所求双曲线方程为:,又点(3,2)在双曲线上,解得a212或30(舍去),所求双曲线方程为.【总结升华】根据焦点所在轴的位置合理的设出方程是求双曲线方程的基本步骤。举一反三:【变式1】设双曲线焦点在x轴上,两条渐近线为y±x,则该双曲线的离心率为()A5 B. C. D. 【答案】C【变式2】(2015 安徽卷)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( )(A) (B) (C) (D)【答案】 C【解析】由题意:选项中A,B焦点在x轴,排除C项的渐近线方程为,即y±2x,故选C.类型二:直线与双曲线的位置关系例2已知双曲线x2y2=4,直线l:y=k(x1),讨论直线与双曲线公共点个数.【思路点拨】直线与曲线恰有一个交点,即由直线方程与曲线方程联立的方程组只有一组解.【解析】联立方程组消去y,并依x项整理得:(1k2)·x2+2k2xk24=0 (1)当1k2=0即k=±1时,方程可化为2x=5,x=,方程组只有一组解,故直线与双曲线只有一个公共点(实质上是直线与渐近线平行时的两种情况,相交但不相切).(2)当1k20时,即k±1,此时有=4·(43k2)若43k2>0(k21),则k,方程组有两解,故直线与双曲线有两交点.(3)若43k2=0(k21),则k=±,方程组有解,故直线与双曲线有一个公共点(相切的情况).(4)若43k2<0且k21则k,方程组无解,故直线与双曲线无交点.综上所述,当k=±1或k=±时,直线与双曲线有一个公共点;当k时,直线与双曲线有两个公共点;当k时,直线与双曲线无公共点.【总结升华】本题通过方程组解的个数来判断直线与双曲线交点的个数,具体操作时,运用了重要的数学方法分类讨论,而且是“双向讨论”,既要讨论首项系数1k2是否为0,又要讨论的三种情况,为理清讨论的思路,可画“树枝图”如图:举一反三:【变式1】(2014 天津)已知双曲线(a0,b0)的一条渐近线平行于直线l:y2x10,双曲线的一个焦点在直线l上,则双曲线的方程为()ABCD【答案】A【解析】令y0,可得x5,即焦点坐标为(5,0),c5,双曲线(a0,b0)的一条渐近线平行于直线l:y2x10,2,c2a2b2,a25,b220,双曲线的方程为故选:A【答案】B【变式2】直线y=x+3与曲线x·|x|+y2=1的交点个数是 ( )A.0 B.1 C.2 D.3【答案】D例3.过点与双曲线有且只有一个公共点的直线有几条,分别求出它们的方程。【思路点拨】显然采用过P点的直线方程与双曲线方程联立的方法,但要注意直线斜率不存在的情况要先判断。【解析】若直线的斜率不存在时,则,此时仅有一个交点,满足条件;若直线的斜率存在时,设直线的方程为则, ,当时,方程无解,不满足条件;当时,方程有一解,满足条件;当时,令,化简得:无解,所以不满足条件;所以满足条件的直线有两条和。【总结升华】直线与双曲线有一个公共点时可能相切也可能相交,注意直线的特殊位置和所过的特殊点.举一反三:【高清课堂:双曲线的性质371712 例2】【变式】双曲线的右焦点到直线x-y-1=0的距离为,且.(1)求此双曲线的方程;(2)设直线y=kx+m(m0)与双曲线交于不同两点C、D,若点A坐标为(0,-b),且|AC|=|AD|,求实数k取值范围。【答案】(1)(2)类型三:双曲线的弦例4.(1)求直线被双曲线截得的弦长;(2)求过定点的直线被双曲线截得的弦中点轨迹方程.【思路点拨】(1)题为直线与双曲线的弦长问题,可以考虑弦长公式,结合韦达定理进行求解。(2)题涉及到直线被双曲线截得弦的中点问题,可采用点差法或中点坐标公式,运算会更为简便.解:由得得(*)设方程(*)的解为,则有 得,.(2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为,它被双曲线截得的弦为对应的中点为, 由得(*)设方程(*)的解为,则 ,且,得或.方法二:设弦的两个端点坐标为,弦中点为,则得:, 即, 即(图象的一部分)【总结升华】(1)弦长公式;(2)注意上例中有关中点弦问题的两种处理方法.举一反三:【变式】垂直于直线的直线被双曲线截得的弦长为,求直线的方程【答案】类型四:双曲线的综合问题例5.设P是双曲线x21的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|PF|的最小值为_【答案】2【解析】设双曲线的另一个焦点为F,则有F(2,0),F(2,0),连结AF交双曲线的右支于点P1,连结P1F,则|P1F|P1F|2a2.于是(|PA|PF|)min|P1A|P1F|P1A|(|P1F|2)|AF|22.【总结升华】双曲线的定义是解决有关最值问题的重要依据举一反三:【变式1】设,为双曲线=1的右焦点,在双曲线上求一点P,使得 取得最小值时,求P点的坐标.【答案】P点的坐标为【高清课堂:双曲线的性质371712例3】【变式2】一条斜率为1的直线与离心率为的双曲线交于P、Q两点,直线与y轴交于R点,且,求直线和双曲线方程.【答案】直线方程;双曲线方程