高二物理-知识讲解机械振动 复习与随堂提高.doc
《高二物理-知识讲解机械振动 复习与随堂提高.doc》由会员分享,可在线阅读,更多相关《高二物理-知识讲解机械振动 复习与随堂提高.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、机械振动 复习与巩固编稿:张金虎 审稿:代洪【学习目标】1通过观察和分析,理解简谐运动的特征。能用公式和图像描述简谐运动的特征。2通过实验,探究单摆的周期与摆长的关系。3知道单摆周期与摆长、重力加速度的关系。会用单摆测定重力加速度。4通过实验,认识受迫振动的特点。了解产生共振的条件以及在技术上的应用。【知识网络】【要点梳理】要点一、简谐运动 1定义 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。 表达式为:,是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是
2、简谐运动。 2几个重要的物理量间的关系 要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。 (1)由定义知:,方向与位移方向相反。 (2)由牛顿第二定律知:,方向与方向相同。 (3)由以上两条可知:,方向与位移方向相反。 (4)和之间的关系最复杂:当同向(即同向,也就是反向)时一定增大; 当反向(即反向,也就是同向)时,一定减小。 3从总体上描述简谐运动的物理量 振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期来描述完成一次全振动所需的时间。 (1)振幅A是描述振动强弱的物理量
3、。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) (2)周期T是描述振动快慢的物理量。周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中是振动物体的质量,是回复力系数,即简谐运动的判定式中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。 (3)频率也是描述振动快慢的物理量。周期与频率的关系是。 4表达式 ,其中A是振幅,是时的相位,即初相位或初相。 5简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越大。简谐运动的振幅不变,
4、总的机械能守恒。 6简谐运动中路程和时间的关系 (1)若质点运动时间与周期的关系满足(),则成立要点诠释:不论计时起点对应质点在哪个位置向哪个方向运动,经历一个周期就完成一次全振动,完成任何一次全振动质点通过的路程都等于。 (2)若质点运动时间与周期的关系满足(),则成立 (3)若质点运动时间与周期的关系满足,此种情况最复杂,分三种情形 计时起点对应质点在三个特殊位置(两个最大位移处,一个平衡位置),由简谐运动的周期性和对称性知,成立。 计时起点对应质点在最大位移和平衡位置之间,向平衡位置运动,则 计时起点对应质点在最大位移处和平衡位置之间,向最大位移处运动,则 (4)质点运动时间为非特殊值,
5、则需要利用简谐运动的振动图象进行计算。简谐运动的位移、速度、加速度及对称性 (1)位移:方向为从平衡位置指向振子位置,大小为平衡位置到该位置的距离。 位移的表示方法:以平衡位置为原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子(偏离平衡位置)的位移用该时刻振子所在位置的坐标来表示。振子通过平衡位置时,位移改变方向。 (2)速度:描述振子在振动过程中经过某一位置或在某一时刻运动的快慢。在所建立的坐标轴上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反。 振子在最大位移处速度为零,在平衡位置时速度最大,振子在最大位移处速度方向发生改变。 (3)加速度:根据牛顿第二定律,做简谐运动
6、物体的加速度由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。 振子在位移最大处加速度最大,通过平衡位置时加速度为零,此时加速度改变方向。 (4)简谐运动的对称性 瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系。另外速度、动量的大小具有对称性,方向可能相同或相反。 过程量的对称性:振动质点来回通过相同的两点间的时间相等,如;质点经过关于平衡位置对称的等长的两线段时时间相等,如,如图所示:要点诠释: 利用简谐运动的对称性,可以解决物体的受力问题,如放在竖直弹簧上做简谐运动的物体,若已知物体在最高点的合力或加速度,可求物体在最低点
7、的合力或加速度。但要注意最高点和最低点合力或加速度的方向相反。 由于简谐运动有周期性,因此涉及简谐运动时,往往出现多解,分析时应特别注意:物体在某一位置时,位移是确定的,而速度不确定;时间也存在周期性关系。要点二、简谐运动的图象1简谐运动的图象 以横轴表示时间,以纵轴表示位移,建立坐标系,画出的简谐运动的位移时间图象都是正弦或余弦曲线。2简谐运动的图象 (1)从平衡位置开始计时,函数表达式为,图象如图。 (2)从最大位移处开始计时,函数表达式,图象如图。 3振动图象的物理意义 表示振动物体的位移随时间变化的规律。4从图象中可以知道 (1)任一个时刻质点的位移 (2)振幅 (3)周期 (4)速度
8、方向:由图线随时间的延伸就可以直接看出 (5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反。只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了。 5关于振动图象的讨论 (1)简谐运动的图象不是振动质点的轨迹。做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如单摆)。这种往复运动的位移图象,就是以x轴上纵坐标的数值表示质点对平衡位置的位移,以t轴横坐标数值表示各个时刻,这样在xt坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况振动图象。 (2)简谐运动的周期性体现在振动图象上是曲线的重复性。简谐运
9、动是一种复杂的非匀变速运动,但运动的特点具有简单的周期性、重复性、对称性。所以用图象研究要比用方程要直观、简便。简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小,正负表示速度的方向,斜率为正时表示速度沿正向,斜率为负时表示速度沿负向。 6根据简谐运动图象分析简谐运动情况的基本方法 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体的运动过程联系起来是讨论简谐运动的一种方法。 (1)从简谐运动图象上可以直接读出不同时刻的位移值,从而知道位移随时间的变化情况。 (2)在简谐运动图象中,用作曲线上某点切线的方法可
10、确定各时刻质点的速度大小和方向。切线与x轴正方向夹角小于时,速度方向与选定的正方向相同,且夹角越大表明此时速度越大;当切线与x轴正方向的夹角大于时,速度方向与选定的正方向相反,且夹角越大表明此时速度越小。也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点速度越大,而最大位移处,质点速度为零。根据位移变化趋势判定速度方向,若正位移增大,速度为正方向,若正位移减小,速度为负方向;反之,若负位移增大,速度为负方向,若负位移减小,速度为正方向。 (3)由于,故可以根据图象上各个时刻的位移变化情况确定质点加速度的变化情况。同样只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动
11、能和势能的变化情况。要点三、典型的简谐运动 1弹簧振子 (1)周期,与振幅无关,只由振子质量和弹簧的劲度系数决定。 (2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。 在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。 2单摆 (1)在一条不可伸长的、质量可以忽略的细线下拴一质点,上端固定,构成的装置叫单摆;当单摆的最大偏角小于时,单摆的振动近似为简谐运动。 (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度()越大,由于摆球的轨迹是圆弧,所以除最高点外,摆球的
12、回复力并不等于合外力。 (3)单摆的周期:。在小振幅摆动时,单摆的振动周期跟振幅和振子的质量都没有关系。 3简谐运动的两种模型的比较弹簧振子单摆模型示意特点(1)忽略摩擦力,弹簧对小球的弹力提供回复力(2)弹簧的质量可忽略(1)细线的质量,球的直径均可忽略(2)摆角很小公式回复力(1)回复力(2)周期 4类单摆的等效摆长和等效重力加速度 在有些振动系统中不一定是绳长,也不一定为,因此出现了等效摆长和等效重力加速度的问题。 (1)等效摆长:如图所示,三根等长的绳共同系住一密度均匀的小球,球直径为。与天花板的夹角。若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在处,故等效摆长,周期;若摆球做垂
13、直纸面的小角度摆动,则摆动圆弧的圆心在处,故等效摆长为,周期 (2)等效重力加速度:公式中的由单摆所在的空间位置决定。 由知,随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值代入公式,即不一定等于 还由单摆系统的运动状态决定。如单摆处在向上加速发射的航天飞机内,设加速度为,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值再如,单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则等效值,所以周期为无穷大,即单摆不摆动了。 还由单摆所处的物理环境决定。如带电小球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直电
14、场力的合力在圆弧切线方向的分力,所以也有等效值的问题。 在均匀场中值等于摆球静止在平衡位置时摆线的张力与摆球质量的比值,由此找到等效重力加速度代入公式即可求得周期。若,变短;,变长。【典型例题】类型一、简谐运动的对称性应用例1如图所示,质量为的物体放在弹簧上,与弹簧一起在竖直方向上做简谐运动,当振幅为时,物体对弹簧的最大压力是物重的倍 (1)物体对弹簧的最小压力是多少? (2)要使物体在振动中不离开弹簧,振幅不能超过多大?【思路点拨】对竖直方向的弹簧振子分析时要注意四个位置特点,平衡位置与弹簧原长处不同,平衡位置,速度最大,弹簧原长处,弹力为零,加速度为,速度不是最大最高点和最低点,速度均为零
15、,加速度等大、反向,相对于平衡位置对称,而不是相对于原长处对称【答案】(1) (2)【解析】(1)物体做简谐运动在最低点时物体对弹簧的压力最大,在最高点时物体对弹簧的压力最小物体在最高点的加速度与在最低点时的加速度大小相等,回复力的大小相等物体在最低点时:, 物体在最高点时: 由两式联立解得(2)当振幅为A时,即 欲使物体在振动中不离开弹簧,则最大回复力可为,即 由得: 即要使物体在振动中不离开弹簧,振幅不能超过【总结升华】对竖直方向的弹簧振子分析时要注意四个位置特点,平衡位置与弹簧原长处不同,平衡位置,速度最大,弹簧原长处,弹力为零,加速度为,速度不是最大最高点和最低点,速度均为零,加速度等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二物理-知识讲解 机械振动 复习与随堂 提高 物理 知识 讲解 复习
限制150内