《霍金与时间箭头之谜.docx》由会员分享,可在线阅读,更多相关《霍金与时间箭头之谜.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、霍金与时间箭头之谜 摘 要 介绍了时间箭头问题以及霍金对这一问题的探讨。霍金最初进入宇宙学领域时首先对电磁学时间箭头问题进行了探讨,他认为电磁学时间方向性的根源在热力学,而人主观感受的时间方向必定与热力学时间箭头一样,都是沿着熵增的方向。后来,在进行量子宇宙学探讨时,霍金提出了无边界模型,在这一探讨中霍金一度得出了宇宙膨胀时熵增加、宇宙收缩时熵减小的结论,但后来他相识到这一结论是错误的,并称之为自己在科学上的最大错误。 关键词 时间箭头 量子宇宙学 电磁干脆作用理论 霍金 一 时间的本质 提到霍金,即便是沒有专业学问的一般公众也都听说过他撰写的时间简史。作为霍金的第一本科普著作,这书名的确极为
2、恰当:霍金本人的科学探讨生涯正是从对时间箭头之谜的探究起先的,而终其一生,对时间问题的探究始终是他探讨的重要内容之一。 所谓时间箭头之谜,也就是时间为什么有方向的问题。自古以来,人们都用流水比方时间,因为时间有一个特定的方向。在空间中我们可以向不同的方向运动,然而在时间中这是不行能的,我们只能随着时间“前行”,去往将来而无法返回过去,这是时间与空间的一个根本上的不同,也就是时间的方向性或者所谓时间箭头。为什么时间与空间会如此不同呢?是什么造成了时间箭头呢?自19世纪以来,这些问题就引起了很多科学家的思索。特殊是物理学上的很多基本的动力学理论,比如粒子的运动方程、电磁场的场方程等,都存在时间反演
3、对称性:把方程中的时间t变成-t,方程是不变的。例如,牛顿运动方程F=ma,这里加速度a是位移的二阶导数,a=d2x/dt2,假如我们把t换成-t, a是不变的,因此这个方程没有任何改变。既然如此,为什么我们能够区分过去和将来呢?这就是所谓时间箭头之谜。 据霍金本人回忆1, 2,20世纪60年头初他刚成为探讨生的时候,导师夏玛给他的题目就与时间箭头问题有关。作为一个刚起步的探讨生,霍金首先去图书馆查阅有关文献。不知是出于导师的建议还是他自己查询的结果,霍金想阅读的主要参考文献是哲学家赖欣巴哈的时间的方向一书3。不过,霍金发觉剑桥高校图书馆所藏的这本书被人借走了,登记的借书者是剧作家普莱斯特利。
4、霍金在他的回忆中说,普莱斯特利借阅此书是为了写作他的戏剧时间与康威一家。霍金信任该书中或许有他所想要找寻的答案,于是在图书馆填写了召回单,迫使普莱斯特利把书还了回来。 这里顺便说说,时间与康威一家的主题也是对时间的理解。在该剧第一幕中,康威夫人、女儿和儿子们以及孩子们的男友和女友们在家中开派对庆祝第一次世界大战的成功结束,他们生活富足,充溢了对将来的美妙向往和希望,只有男孩艾伦好像特别淡定。不过,在第一幕结束时,女孩凯却突然有了一丝惆怅:她好像在幻觉中看到了一些将来的情景。在其次幕中,同一地点,时间已过去了18年,然而生活却令人悲观,每个人的婚姻、事业都未能如其所愿,一家的财宝也已耗尽,被迫出
5、售家庭房产,而且在种种经济困难中,一家人冲突冲突不断,关系面临裂开。只有艾伦仍保持淡定。当凯向艾伦谈起这些苦恼时,艾伦对她说,生活的隐私在于理解真正的实在:我们以为时间消逝、只能不断抓住机会尽量捞取眼前的东西,但其实这只是一种假象,假如我们能从永恒的角度来看问题,相识到每个人的一生其实就是时间空间中的一条轨迹,任何一个时刻只是我们自己的一个横断面,那我们就能超越我们的苦痛,也不必与别人发生冲突。第三幕又再回到当时:这时我们清晰地看到那时的康威一家就已播下了后来生活失败的种子,势利和高傲扭曲了人们的心灵和关系。当派对结束时,凯好像想起了她幻觉中看到的将来而感到一丝担心,她走出派对,艾伦告知她,将
6、来他会帮助她。全剧结束。 这部戏剧通过一个人生故事,启发我们从另一个视角去谛视时间的本质。事实上,把时间视为幻觉的看法由来已久。早在希腊时代,芝诺、巴门尼德等人就提出了飞矢不动、阿基里斯无法追上乌龟等关于时间的佯谬,进而主见真正的实在是超越于时间之外的3。爱因斯坦也表达过一种类似的看法。在悼念好友贝索的信中,他写道:“现在他又一次比我先行一步,离开了这个离奇的世界。这没有什么意义。对于我们有信仰的物理学家来说,过去、现在和将来之间的分别只不过有一种幻觉的意义而已,尽管这幻觉很坚韧。”4不过,不行否认的是,过去与将来并不对称:对于过去,我们存有记忆而无法变更,对于将来我们则能够变更却无法预知。因
7、此,就记忆或心理而言,时间的方向性是明显的,也就是存在所谓心理时间箭头。或者,反过来也可以说,我们能够依据记忆来定义时间的方向。 再回到赖欣巴哈的哲学书。赖欣巴哈本人也是学习数学和物理出身,曾在德国跟随爱因斯坦探讨相对论,后来转入哲学,是逻辑阅历主义学派的主要成员之一。他在这本书里,也回顾并评述了从古希腊哲学家到康德、柏格森等近代哲学家再到现代物理学中人们对于时间的种种思索和探讨。赖欣巴哈把时间箭头的起源归结于因果性,并试图通过细致的定义和分析“因”与“果”的差异给出时间箭头的起源。霍金后来说,他读了此书后大失所望,认为书的内容相当晦涩,而且在霍金看来,用因果性说明时间箭头是一种循环逻辑,因为
8、在物理上的运动定律是对称的:过去的状态诚然可以确定将来的状态,但反过来也可以说假如将来的状态确定了,那么过去的状态也就确定了。 二 电磁学时间箭头 导师夏玛建议霍金阅读一篇由加拿大物理学家霍伽思撰写的最新论文6,探讨另一种时间箭头的可能来源:电磁时间箭头或者叫辐射时间箭头。在电磁学中,电磁波方程是一种二阶微分方程,这种方程对时间是对称的,因此满意场方程的电磁波有所谓推迟解和超前解, 假如我们考虑一个电荷加速运动产生电磁波,那么应当选择推迟解,即电荷对周边电磁场的影响是经过一个时间t=r/c后传到距离电荷r处;但是求解方程的时候,还有另一种解,是距离r处的电场超前了t=r/c发生改变。为什么应选
9、择推迟解而不是超前解?通常的理解是这是由边界条件确定的:我们给定了电荷的运动,而并未假定恰好有从无限远处入射来的电磁波。 不过,20世纪40年头,费曼在攻读博士学位时和他的导师惠勒提出的一种电磁理论表述为探讨这一问题带来了新的视角,他们的理论称为干脆作用电磁理论7, 8。在这种表述中,并没有我们一般所说的电磁场,而只有电荷之间的相互作用。比如,我们看到的太阳光,通常的理解是太阳上的电荷发生的热运动影响了四周的电磁场,产生了光波,传到我们眼中,导致眼中的电荷运动,于是阳光就被我们看到了。然而在干脆作用理论中并没有电磁场,而是太阳上的电荷与我们眼中的电荷有干脆的吸引和排斥作用,这种作用会根据光速传
10、播,它们的运动导致我们眼中的电荷感受到改变的相互作用,从而望见“阳光”。费曼之所以提出这种理论,是因为他当时认为导致量子电动力学中出现无限大的缘由是点电荷的自相互作用9。假如没有电磁场,每个电荷都不会发生自相互作用,或许就可以避开这些无限大。但是,事实上只有包括了电荷的自相互作用才能得到与观测一样的“辐射阻尼”。为了说明这一点,费曼的思路是,加速的电荷会干脆作用在“汲取体”上,这些汲取体因此会产生加速运动,这些加速运动电荷再反过来作用在原来那个电荷上,从而产生等效的自相互作用。但这样一来,就出现了两个问题:一个是,这样辐射阻尼看上去会依靠于汲取体的性质,而电磁场理论中则与这些无关;还有一个问题
11、:这些作用假如根据光速传播,将会延迟一段时间才能反作用在原来那个电荷上,而这与所要求的时间不一样。对第一个问题的说明是,假如汲取体数量特别多,分布在空间各个地方,那么最终结果就与其详细性质无关了。对其次个问题,惠勒和费曼发觉,假如假定这种作用不是单纯的推迟解,而是一半推迟解,一半超前解,就正好可以获得所需的效果。使总的效果等效于我们通常所说的电磁波推迟解,这就为理解电磁时间箭头的出现供应了一种新的视角。 霍伽思探讨了把干脆作用理论推广到膨胀宇宙的状况。这令当时的一些宇宙学家包括霍金的导师夏玛以及同在剑桥的霍伊尔很感爱好。霍伊尔是当时最闻名的天文学家之一,霍金去剑桥高校读探讨生时本想申请霍伊尔作
12、为导师1,但因为霍伊尔的学生已经太多未能如愿,而被安排给了此前他从未听说过的夏玛。事后看来,这真可谓塞翁失马、焉知非福,尽管个人学术成就不如霍伊尔,但夏玛却是位极好的导师,他培育了包括霍金在内的很多极其优秀的探讨生,其中许多人后来的名气都远远超过他自己。霍伊尔是稳恒态宇宙学理论的主将,稳恒态宇宙学理论认为宇宙在膨胀的同时也不断产生新的物质,从而始终保持相同的状态,这样的宇宙是无始无终的,不必象大爆炸宇宙学那样有个时间的起点。事实上,大爆炸宇宙学这个名字就是霍伊尔起的,原来大爆炸理论创始人勒梅特和伽莫夫等把他们自己的理论称为“原始火球理论”,后来在一次英国广播公司的科普讲座中,霍伊尔略带嘲讽地把
13、这一理论称之为大爆炸理论,后来被普遍采纳。霍伊尔和他的学生纳里卡尔把干脆作用电磁理论用于膨胀宇宙,他们提出宇宙若像稳恒态宇宙学所主见的那样始终膨胀同时维持密度不变,则也能得到这一结果;反之,假如宇宙大爆炸,则不能得到这一结果,这被他们视为稳恒态宇宙的又一“证据” 10。 霍伊尔后来在皇家学会做了这一理论的演讲,但在提问时,坐在听众席中的霍金却指出了霍伊尔和纳里卡尔理论存在问题1, 2, 11。霍伊尔说,“你怎么知道的”?霍金说他做了这一计算。许多听众以为霍金是当场心算得到这一结果的,事实上霍金与纳里卡尔共用办公室,他事先知道霍伊尔和纳里卡尔的工作状况。霍伊尔勃然大怒:此时他正在争取让剑桥高校为
14、自己成立一个新探讨所,他认为霍金当众指出自己论文中的问题可能是他的敌人有意支配的阴谋,想要出他的丑从而破坏他成立新探讨所的努力。不过事后的发展证明,并没有这样的阴谋,他的探讨所顺当成立,于是他与霍金的关系也就好转了,后来他还在探讨所中给了霍金一个职位2。 其实,在这个问题上,费曼本人并不认可用电磁理论说明时间箭头的努力。费曼出席了1963年的一次关于这一问题的会议,在后来出版会议文集时,费曼认为该会上许多发言都是“胡话”,不情愿把自己的名字与之联系在一起,因此坚持在该文集中不能提自己的名字,而只称为X先生12。费曼明确指出,时间箭头的起源就是统计力学。事实上,惠勒和费曼曾与爱因斯坦探讨他们的这
15、项工作,爱因斯坦告知他们,之前他曾与里茨就电磁学时间箭头的起源进行过争辩。里茨认为,加速运动的电荷存在辐射阻尼表明电磁学中存在基本的时间不对称性,而爱因斯坦则认为,电磁学本质上是时间对称的,辐射阻尼事实上是由于电荷与大量其它电荷相互作用的平均效应,也就是时间箭头本质上来源于统计力学13。 三 热力学时间箭头 我们知道有不行逆的热力学其次定律,随着时间的推移,封闭的热力学系统的熵总是增加的,这就是热力学上的时间箭头。这肯定律的表现在日常生活中到处可见:把不同冷热的物体相接触,能量总是从热的一边传向冷的一边,而不会冷的越来越冷、热的越来越热;通过加热很简单把生米煮成熟饭,但是却没有方法把熟饭再变回
16、生米,等等。那么,为什么热力学中存在不行逆性呢?热力学是人们依据宏观阅历总结的物理学定律,它的微观基础是统计力学。在统计力学中,物质基本单元的微观运动本身对于时间可以是对称的,但是由于概率的关系,仍旧会产生宏观的时间箭头。这种时间箭头的起源其实并不难以理解:一起先系统的粒子都分布在相空间中的一个小范围内,这就是所谓有序的或者叫低熵的初始态,随着时间推移,系统演化,从动力学的角度这些粒子的演化是确定的,但是假如不去求解动力学方程,那么在相空间中看它们的运动是随机的,只有某种概率分布。这些粒子在相空间中的轨迹渐渐分散开来。那么在将来的某一时刻,假如我们去看它们的分布,在绝大多数状况下,我们会看到它
17、们在相空间中分布的范围比原来要大,也就是所谓无序的或者高熵的状态。假如拿我们日常生活中的例子来说明,假定你买到一副新扑克牌,打开盒子,你会发觉牌是根据花色和大小排列好的。现在假如你随意“洗牌”,也就是随机地从其中拿出一些牌插到別的地方去,那么越“洗”这副牌的排列次序就越混乱无序。本质上,这与热力学其次定律中熵增加的原理是一样的。而且,在这一过程中,“微观过程”是可逆的,洗牌时你可以把前面的牌插到中间去,也可以把中间的牌抽出来放到前面去,这一过程是完全对称的,但只要你持续做下去,牌的次序就会越来越乱,直到完全打乱为止。 用热力学时间箭头也很简单说明我们前面提到的心理时间箭头。虽然我们还不完全清晰
18、大脑记忆是怎样工作的,但它应当是满意热力学其次定律的。另外,我们很清晰计算机的记忆是如何的工作的,而对计算机记忆的分析可以清楚地看到,要让计算机记录下任何东西,系统的总熵必定增加,因此这个心理时间箭头与热力学时间箭头完全一样,或许可以说是热力学时间箭头的方向确定了心理时间箭头。反之,设想有某个世界,其熵随着时间不断削减,那么依据它现在的状态可以给出其将来的状态,因此可以说它事实上有关于“将来”的记忆。所以,更准确地说,时间的方向是由热力学中熵增加的方向确定的1。 四 宇宙学时间箭头 霍金在探讨之后感到,时间箭头既然来源于热力学,在这一问题上难以取得更多进展,因此他短暂放下了这一问题。此时,伦敦
19、的数学家彭罗斯对广义相对论的探讨起先引起霍金的关注。彭罗斯运用几何方法,证明白黑洞时空中奇点的存在。霍金把这一方法应用到宇宙学上,发觉宇宙中也不行避开地存在奇点,这为认可宇宙大爆炸供应了理论上的依据2。 20世纪7380年头,正是量子宇宙学蓬勃发展的时期。随着宇宙微波背景被发觉,大爆炸宇宙学理论被观测证明,学者们起先仔细地思索令人不行思议的宇宙大爆炸之初的状态。霍金之前的探讨表明,在宇宙的极早期,存在着理论上的奇点,也就是时空曲率达到无限大。不过,事实上在涉及的能量尺度达到了普朗克能标时,量子力学效应和万有引力效应都特别重要,因此量子引力可能会带来新的物理现象。缺憾的是,量子力学与描述引力的广
20、义相对论作为现代物理学的两大基础,却始终未能融合,当时并没有一个自洽的量子引力理论。后来,弦论探讨取得了很大进展,可能成为一个自洽的量子引力理论,但也还没有得到完全证明,更没有任何观测证据。尽管如此,人们还是试图在肯定的限制条件下探讨宇宙的量子效应。比如,在广义相对论中,时间和空间由度规张量描述,但广义相对论是个经典理论,度规张量是确定的。量子力学中,系统的状态则由波函数描述,其肯定值的平方给出了状态的几率分布。一种探讨量子宇宙学的思路是,时空由度规张量所描述,可以写出度规的波函數及其满意的量子力学方程,也就是所谓惠勒-德维特方程,并在肯定条件下求解。 霍金和哈特尔也尝试用这一方法探讨宇宙极早
21、期的量子过程14。他们运用了费曼的路径积分方法探讨宇宙波函数。受到狄拉克的启发,费曼发觉,可以用这样一种直观的方法理解量子力学系统的演化:系统从一个状态|A到状态|B的演化可以同时沿各种不同路径发生,每个路径产生一个不同的相因子,由该路径的作用量S给出,从状态|A到状态|B的跃迁振幅就是把这些不同的路径加起来。通常,这些相因子随着路径的微小改变猛烈变动,因此相互抵消。但是,在作用量S取极值的路径旁边,全部路径的相位一样,因此不会抵消。而我们知道,系统的经典力学路径正是由这些S取极值之处,所以这就很好地用量子力学说明了经典力学。霍金和哈特尔把这一方法运用于量子宇宙学。为了便于计算,他们考虑了具有
22、紧致三维几何的闭宇宙,而“路径”包括了全部没有边界的紧致四维流形,由于这些路径都没有边界,因此被称之为无边界的边界条件。 在这一图像中,存在特别微小尺度上的量子时空涨落,通常它们无法干脆形成按经典广义相对论膨胀的宇宙。但是,量子力学中有所谓隧道效应,这些涨落有肯定的概率穿过势垒,最终形成膨胀的宇宙。好玩的是,从数学上看,当量子力学中一个粒子通过隧道效应穿越势垒时,时间是个虚数。因此,从物理世界的旁观者角度来看,粒子突然从势垒的一侧消逝,而在势垒另一侧突然出现,但从粒子本身来看,这个过程却是连续的,只不过它在虚时间中穿越到了另一侧。类似地,在量子宇宙学中,并没有真正的奇点。这样,霍金就用量子力学
23、,否定了他自己原来的宇宙起先时奇点不行避开的结论。另外,除了霍金和哈特尔模型外,还有一些其它类似但不同的解,例如韦林金也给出了一个解,但与霍金-哈特尔解不同,他选取的边界条件是在半径R0时产生的宇宙应当是一个纯粹膨胀的宇宙,称为“有生于无”边界条件15。不过,究竟怎样理解宇宙波函数、怎样选取边界条件、这些高度简化的模型究竟在多大程度上精确反映了量子引力,这些目前都是还远没有定论的问题。 回到时间箭头问题上来。除了热力学中的熵增加外,另一个明显的时间箭头是我们的宇宙在膨胀。这是偶然的呢?还是与热力学时间箭头联系着?我们为何生活在一个膨胀的宇宙中而非收缩的宇宙中?许多学者认为,包括热力学箭头在内的
24、时间箭头都来自宇宙学,正是由于宇宙起先于熵比较低的状态,才能进而向熵更高的状态演化,从而允许有热力学的时间箭头。那么,假如宇宙由膨胀转为收缩,熵会如何改变呢? 霍金用他的无边界模型探讨了宇宙膨胀到最大半径再转为收缩这一过程中扰动的改变16。假定这些扰动一起先很微小,当宇宙膨胀时,这些扰动会渐渐增大,熵也会变大。最初的计算好像表明,当宇宙转为收缩时,这些扰动则会变小。因此,霍金认为,这表明宇宙膨胀和热力学时间箭头是联系在一起的:当宇宙转为收缩时,熵就会减小。但是,根据前面的探讨,心理时间箭头是沿着熵增的方向。因此,霍金提出了一种好玩的可能性:在这个收缩宇宙中假如有才智生命存在,他们也不会发觉宇宙
25、会收缩,相反,他们的时间认知将恰好反转过来,会把“前”与“后”逆转过来,因此也会认为自己的宇宙正在膨胀!当然,这里的一个问题是一个才智生命假如生活在膨胀接近最大值的时刻,他会经验宇宙的膨胀-收缩过程,这时会发生什么?霍金推想,他会忘掉自己的过去,转而“记起”原来被认为是将来的东西。 这是一个听上去相当荒唐的情景。事实上,后来霍金承认,在与他的学生佩奇、拉夫勒蒙探讨后,他相识到在这里他犯了一个错误他把这称作他自己最大的错误。霍金说:“当你发觉自己犯了像这样的错误后应当怎么办?有些人从不承认他们是错误的,而接着去找寻新的往往相互不协调的论据为自己辩解就像爱丁顿在反对黑洞理论时之所为;另外一些人首先
26、宣称,从来没有主见过不正确的观点,假如主见过,也只是为了显示它是不协调的。在我看来,假如你在出版物中承认自己的错误,那会好得多,并可以削减混乱。爱因斯坦是个好的榜样,他为了建立静止宇宙模型而引入宇宙学常数,后来他把这称作一生中最大的错误。”18霍金指出,之所以得到那些随着收缩变小的扰动,是因为选取了错误的边界条件。事实上,当宇宙起先收缩时,扰动仍会变大,熵也仍会接着增加1。因此,时间箭头从根本上来说是来源于热力学。在量子宇宙无边界模型中,可以预言宇宙起先膨胀,并在膨胀中熵增,但即使宇宙转入收缩阶段,熵仍旧增加。至于为什么我们看到的宇宙是膨胀的?一种可能性是我们恰好处在这个阶段,另一种可能性是,
27、到了遥远的将来宇宙起先转入收缩时,全部生命都早已在漫长的宇宙演化过程中衰亡,因此依据弱人择原理,我们看到的是膨胀宇宙。不过,应当指出的是,全部这些都是在无边界宇宙模型的框架下的探讨,事实上真实的宇宙未必就是由这一模型描述的。 五 结语 时间的本质始终是令人极感爱好但又难以把握的问题。作为时空理论的一位主要探讨者,霍金在这方面也投入了很多时间精力,他的很多探讨也别出心裁,并呈现了深厚的功力。不过尽管如此,在这个领域中,他未能取得像奇点定理、黑洞热力学、霍金辐射等那样的重大成果,甚至还出现了错误,这唯恐是由于这一问题本身具有更大难度、更多不确定性造成的。 事实上,关于量子宇宙学的探讨,在20世纪7
28、380年头取得了很大进步,霍金是其中的探讨佼佼者。此后,一方面由于身体缘由,他的探讨工作变得更加困难,另一方面宇宙学的探讨重点也发生了转移,宇宙学探讨的主流转向了如何用实际观测检验理论模型,而抽象理论的探讨也更多地转向与弦论/M-理论结合。霍金仍非常坚韧地开展探讨,虽然没有再取得他此前取得的那种重大成果,但直到去世前他始终活跃在探讨的前沿上。 参考文献 1 Hawking, S. The No Boundary Condition And The Arrow of TimeA. in J. J. Halliwell, J. Perez-Mercader, W. H. Zurek eds., P
29、hysical Origin of Time AsymmetryC. Cambridge: Cambridge University Press, 11014. 346358. 2 Hawking, S. Sixty Years in a NutshellA. in G. W. Gibbons, E. P. S. Shellard, S. J. Rankin eds., The Future of Theoretical Physics and CosmologyC. Cambridge: Cambridge University Press, 2003. 105117. 3 Reichenb
30、ach, H. The Direction of TimeM. Berkeley: University of California Press, 1956. 4 愛因斯坦. 给M. 贝索的儿子和妹妹的信A. 许良英, 赵中立, 张宣三译. 爱因斯坦文集C. 北京: 商务印书馆, 11019. 507. 5 Halliwell, J. J. Quantum Cosmology and Time AsymmetryA. in J. J. Halliwell, J. Perez-Mercader, W. H. Zurek eds., Physical Origin of Time Asymmetr
31、yC. Cambridge: Cambridge University Press, 11014. 369389. 6 Hogarth, J. E. Cosmological Considerations of the Absorber Theory of RadiationJ. Proceedings of Royal Society, 1962, A267: 365. 7 Wheeler, J. A., Feynman, R. P. Interaction with the Absorber as the Mechanism of RadiationJ. Reviews of Modern
32、 Physics, 1945, 17: 157181. 8 Wheeler, J. A., Feynman, R. P. Classical Electrodynamics in Terms of Direct Interparticle ActionJ. Reviews of Modern Physics, 1949, 21: 425433. 9 Schweber, S. S. QED and the Men Who Made ItM. Princeton:Princeton University Press, 11014. 10 Hoyle, F., Narlikar, J. V. Tim
33、e Symmetric Electrodynamics and the Arror of Time in CosmologyJ. Proceedings of the Royal Society, 1964, A273: 1. 11 Hawking, S. W. On the Hoyle-Narlikar Theory of GravitationJ. Proceedings of the Royal Society, 1965, A286: 313. 12 Gold, T. eds. The Nature of TimeM. Ithaca Cornell University Press,
34、1967. 13 Wheeler, J. A. Time TodayC. in J. J. Halliwell, J. Perez-Mercader, W. H. Zurek eds., Physical Origin of Time Asymmetry. Cambridge: Cambridge University Press, 11014. 369389. 14 Hartle, J. B., Hawking, S. W. Wave Function of the UniverseJ. Physical Review, 11013, D28: 2960. 15 Vilenkin, A. C
35、reation of the Universe from NothingJ. Physics Letters, 11012, B117: 25. 16 Hawking, S. W. The Arrow of Time in CosmologyJ. Physical Review, 11015, D32: 2489. 17刘辽, 赵峥, 田贵花, 张靖仪. 黑洞与时间的性质M. 北京: 北京高校出版社, 2022. 18 Hawking, S. W. A Brief History of Time: From the Big Bang to Black HolesM. Bantam Books, 11018. 第18页 共18页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页第 18 页 共 18 页
限制150内