2022年八年级数学等腰三角形经典教案 .pdf
《2022年八年级数学等腰三角形经典教案 .pdf》由会员分享,可在线阅读,更多相关《2022年八年级数学等腰三角形经典教案 .pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品教学教案等腰三角形一、等腰三角形含义:有两条边相等的三角形。常见题:已知两边长和第三边,求周长。例题:两条边长分别为2和 5,求周长,注意:两边之和大于第三边,两边之差小于第三边。二、等腰三角形的性质:1.等边对等角,例如:已知AB=AC ,B=C等腰三角形的性质:2 等腰的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)。注意:只有等腰三角形才有三线合一。例 1如图,在 ABC 中, AB=AC ,点 D 在 AC 上,且 BD=BC=AD ,求: ABC 各角的度数DCAB3. 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等
2、角对等边”)4. 例 2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形已知: CAE 是 ABC 的外角, 1=2,AD BC(如图)求证: AB=AC 证明: AD BC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等)又 1=2, B= C,AB=AC (等角对等边)练习:已知:如图,AD BC,BD平分 ABC 求证:AB=AD 证明: AD BC, ADB= DBC(两直线平行,内错角相等)又 BD 平分 ABC , ABD= DBC, ABD= ADB , AB=AD (等角对等边)例 3如图( 1),标杆 AB 的高为 5 米,为了
3、将它固定,需要由它的中点C?向地面上与点B 距离相等的 D、E 两点拉两条绳子,使得D、B、E 在一条直线上,量得DE=4 米, ?绳子 CD 和 CE 要多长?21EDCABDCAB精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 15 页 - - - - - - - - - - 精品教学教案(1)EDCAB(2)EDCBMN分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题一、复习知识要点1有两条
4、边相等的三角形是等腰三角形相等的两条边叫做腰,另一条边叫做底边两腰所夹的角叫做顶角,腰与底边的夹角叫做底角2三角形按边分类:三角形()不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形3等腰三角形是轴对称图形,其性质是:性质 1:等腰三角形的两个底角相等(简写成“等边对等角”)性质 2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合4等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 “等角对等边”)二、例题例:如图,五边形ABCDE 中 AB=AE ,BC=DE ,ABC= AED ,点 F 是 CD 的中点 ?求证: AFCD.
5、分析:要证明AFCD,而点 F 是 CD 的中点,联想到这是等腰三角形特有的性质,?于是连接AC、AD ,证明 AC=AD ,利用等腰三角形“三线合一”的性质得到结论证明: 连接 AC 、AD 在 ABC 和AED 中()()()ABAEABCAEDBCED已知已知已知 ABC AED (SAD)AC=AD (全等三角形的对应边相等)又 ACD 中 AF 是 CD 边的中线(已知)AFCD(等腰三角形底边上的高和底边上的中线互相重合)EDCABF精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共
6、15 页 - - - - - - - - - - 精品教学教案EDCABF三、练习(一)、选择题1等腰三角形的对称轴是()A顶角的平分线B底边上的高C底边上的中线D底边上的高所在的直线2等腰三角形有两条边长为4cm 和 9cm,则该三角形的周长是()A17cm B22cm C17cm 或 22cm D18cm 3等腰三角形的顶角是80,则一腰上的高与底边的夹角是()A40B50C60D304等腰三角形的一个外角是80,则其底角是()A100B100或 40C40D805如图 1,C、E 和 B、D、F 分别在 GAH 的两边上,且AB=BC=CD=DE=EF,若 A=18 ,则 GEF的度数是
7、()A80B90C100D108EDCABHFG如图 1答案 :1D 2B 3A 4C 5B 如图 2 (二)、填空题6等腰 ABC 的底角是 60,则顶角是 _度7等腰三角形“三线合一”是指_8等腰三角形的顶角是n,则两个底角的角平分线所夹的钝角是_9如图 2, ABC 中 AB=AC ,EB=BD=DC=CF , A=40 ,则 EDF?的度数是 _10 ABC 中, AB=AC 点 D 在 BC 边上(1) AD 平分 BAC , _=_;_;(2) AD 是中线, _=_;_;(3) AD BC, _=_;_=_11 ABC 中, A=65, B=50,则 AB :BC=_精品资料 -
8、 - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 15 页 - - - - - - - - - - 精品教学教案12已知 AD 是 ABC 的外角 EAC 的平分线,要使AD?BC,?则 ABC ?的边一定满足_13 ABC 中, C=B,D、E 分别是 AB、AC 上的点, ?AE= ?2cm,?且 DE?BC,?则 AD=_ 答案 :660 7等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合8( 90+ 12n)97010略111 12AB=AC 132cm 14 30 海里(三)、解答题15如
9、图, CD 是 ABC 的中线,且CD= 12AB ,你知道 ACB 的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流DCAB16如图,在四边形ABCD 中, AB=AD ,CB=CD ,求证: ABC= ADC. DCAB17如图, ABC 中 BA=BC ,点 D 是 AB 延长线上一点,DFAC 于 F 交 BC 于 E,?求证: DBE 是等腰三角形EDCABF答案 : 15 ACB=90 结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - -
10、 - - - - - - -第 4 页,共 15 页 - - - - - - - - - - 精品教学教案形16连接 BD, AB=AD , ABD= ADB CB=CD , CBD= CDB ABC= ADC 17证明 D=BED 等边三角形定理:在直角三角形中,如果一个锐角等于30, ?那么它所对的直角边等于斜边的一半已知:如图,在RtABC 中, C=90, BAC=30 求证: BC=12ABCABDCAB分析:从三角尺的摆拼过程中得到启发,延长BC 至 D,使 CD=BC,连接 AD 例 5右图是屋架设计图的一部分,点 D 是斜梁 AB 的中点, 立柱 BC、DE 垂直于横梁AC,A
11、B=7.4m ,A=30 ,立柱 BD 、DE 要多长?分析:观察图形可以发现在RtAED 与 RtACB中,由于 A=30 ,所以 DE=12AD ,BC=12AB ,又由 D 是 AB 的中点,所以DE=14AB 例等腰三角形的底角为15,腰长为2a,求腰上的高已知:如图,在ABC中,AB=AC=2a ,ABC= ACB=15 , CD 是腰 AB 上的高求: CD 的长分析:观察图形可以发现,在RtADC 中,AC=2a, 而 DAC 是 ABC的一个外角, 则DAC=15 2=30,根据在直角三角形中,30角所对的边是斜边的一半,可求出 CD等边三角形一、复习知识要点1三条边都相等的三
12、角形叫做等边三角形,也叫做正三角形2等边三角形的性质:?等边三角形的三个内角都相等,?并且每一个内角都等于603等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60的等腰三角形是等边三角形4在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半二、练习DCAEBDCAB精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 15 页 - - - - - - - - - - 精品教学教案(一)、选择题1正 ABC 的两
13、条角平分线BD 和 CE 交于点 I,则 BIC 等于()A60B90C120D1502下列三角形:有两个角等于60;有一个角等于60的等腰三角形;?三个外角(每个顶点处各取一个外角)都相等的三角形;?一腰上的中线也是这条腰上的高的等腰三角形其中是等边三角形的有()ABCD3如图, D、 E、F 分别是等边 ABC 各边上的点,且AD=BE=CF ,则 DEF ?的形状是()A等边三角形B腰和底边不相等的等腰三角形C直角三角形D不等边三角形EDCABF21EDCAB4RtABC 中, CD 是斜边 AB 上的高, B=30 ,AD=2cm ,则 AB 的长度是()A2cm B4cm C8cm
14、D16cm 5如图, E 是等边 ABC 中 AC 边上的点, 1=2,BE=CD ,则对 ADE 的形状最准备的判断是()A等腰三角形B等边三角形C不等边三角形D不能确定形状答案:1C 2D 3A 4C 5B (二)、填空题6 ABC 中, AB=AC ,A= C,则 B=_7已知 AD 是等边 ABC 的高, BE 是 AC 边的中线, AD 与 BE 交于点 F,则 AFE=_ 8等边三角形是轴对称图形,它有_条对称轴,分别是_9 ABC 中, B= C=15, AB=2cm ,CDAB 交 BA 的延长线于点D,?则 CD?的长度是 _答案:6607608三;三边的垂直平分线91cm
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年八年级数学等腰三角形经典教案 2022 八年 级数 等腰三角形 经典 教案
限制150内