2023年阿里巴巴全球数学竞赛预选赛赛题及参考答案.pdf
《2023年阿里巴巴全球数学竞赛预选赛赛题及参考答案.pdf》由会员分享,可在线阅读,更多相关《2023年阿里巴巴全球数学竞赛预选赛赛题及参考答案.pdf(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023 Cpnn?mGGG“?(R?kXe?!/(?G?5uy?G?Czv(t)vXe?v=ar+r3 r5.pr(t)LG?t mCvkG=r(0)=0A/kv(0)=0?a R?50/s?(?(k,He0/svm?jHe0/vXJHe?r(t)?mJp?u10/x?(k8U?8IG4?L224?”0/?(d?O?oY(s?YX0w?e?uy1?YkA?a=2,He?GL22?a=12B?a=3,He?GL22?a=13C?a=4,He?GL22?a=14D?a=5,He?GL22?a=151?lNO1,O2?zn?/,O13O2?SSS.PO1(O2)?c1(2).?O1/2,U?e=(
2、?)?K0.6411.441.9642A B?1/0iZiZmA kn?B kn+1n A?,/0kiZ5Ki)V?Ol?A kl B?ii)e,?gC?,Kiii)?k?b?zgl?Ve?n=n A?n=31n=32n=999n=1000k?nA?3,k10?10H?u100.?l,fuLzTg?u:.3Lzm=I?1I?1=I?2.?3?om?USKS 5050 S 9090 S 100100 S nn4.5r,|r|LrC?l|r|=min|r n|:n Z.1.3s,vlimn|(2+1)ns|=0?2.3s,vlimn|(2+3)ns|=0?6,i-?kN?b?N?kT?U-”?U*
3、?UU”?Xe-S1.-”?USU*?X”?1m Pk?&Ecm?N m?U2.z?”?I?=/uoffer3.XJ”?,uoffero Vp?V1 p u(c)k?XJT?offero”?2UY?e?XJToffero”?UYe 4.XJ”?,uofferoUYe U2?cL?5.ETS?k?offerXJvk?To”?k?N duN?S?dU?3N!?U5!”?k?&E?cL?”?3XS?cJe?N U?VzKXe(a)Xe”?kcm 1 +UXuofferl1m m?w?U3L?=uofferXKUY?e?c1yyu?N3m=mN?(kN )?V3kU?V?(b)b?p=1?N +mNN
4、?4(c)?p (0,1)?N +mNN?41/?c0?c?3k?L?()?uoffer?“?(R?kXe?!/(?G?5uy?G?Czv(t)vXe?v=ar+r3 r5.pr(t)LG?t mCvkG=r(0)=0A/kv(0)=0?a R?50/s?(?(k,He0/svm?jHe0/vXJHe?r(t)?mJp?u10/x?(k8U?8IG4?L224?”0/?(d?O?oY(s?YX0w?e?uy1?Yk(A).?a=2,He?GL22?a=12(B).?a=3,He?GL22?a=13(C).?a=4,He?GL22?a=14(D).?a=5,He?GL22?a=151 YYY(B
5、)PCzv=f(r;a).XJv 0 Kr mOXJv 0?kKr1=0 r5 0N?y?r (0,r5)v 0?r (r5,+)v 0?XJHeUG?O?r5?Lr5?L2I-r52I-a 2?(A)?14 a 0 r5 0AO/r5 1?r (r5,+)v U?”?(D)?a=14kKr1=0 r5=12aqXJdr=2?r=r5?ur5dGU?”?(C)?a 0 v?”(B)?(n?21112KKK?lNO1,O2?zn?/,O13O2?SSS.PO1(O2)?c1(2).?O1/2,U?e=(?)?K(A).0.64(B).1(C).1.44(D).1.96(E).42 YYY(A)(
6、B)(C)(D)360-70c“?)c?kL?K/oNV1 uoNV2S,yV1?c?uV2?c?43?0.p?/3uXJ?n?/u,n?/S,o?n?/=?un?/?,Xd.?3n/,NL?X?c?X?.?K?“?”AT=u1962cuL?Holszty nski,W.and Kuperberg,W.,O pewnej wlasn osci czworo scian ow,Wiadomo sci Matem-atyczne 6(1962),14-16.=?g,vko?,?1977c?=Holszty nski,W.and Kuperberg,W.,On a Property of Tetra
7、hedra,Alabama J.Math.1(1977),40-42.?1986c,Alabama?Carl Linderholmr(J2?pm?/:nnn:uRn?m/ST(c?u?S),?1 6 r 6 m.3Bm,r,?S?kr?LT?kr?Bm,r?.pBm,r?NOXe:?m+1=(r+1)q+s(),KBm,r=qr+1s(q+1)sm+1 r.(CARL LINDERHOLM,AN INEQUALITY FOR SIMPLICES,Geometriae Dedicata(1986)21,67-73.)?K,p?(A)?,:o(B)!(C)(D)y?o(E)Uy?pI?k:3(A)
8、?A:zn?/?lN,?k38/2=12c,udEuler,:6.(B):XJk:5c,o?7k,:5c,lN?:(5,5,4,4,3,3).d?,U?/z:4c(X?lN).(C):A:?lN,lN?:ml?73,:my.XJlN?z:4c,l3?:ABmy,o,o:?,lN?c?4(3,o:?AB?l?C),?u?lN5,b?z:4c,4n:CuA,nCuB,cCu6.?k?u1.5?y.(k(A),(B),(C)XJlN?:ml33?:my?,olN?c?3(3,o:?AB?l?C),?u?lN5,Eb?z:4c,4n:CuA,nCuB,cCu6.?k?u2?y.?XJd?lNlN?(?
9、,5?:?C,d,4:?C,oJp?8/3.?a?,XJlN?:ml23a?:b?:my?(+?),olN?cumin(a,b),?lN?cw,L12,(E)Uy?.41113KKKA B?1/0iZiZmA kn?B kn+1n A?,/0kiZ5Ki)V?Ol?A kl B?ii)e,?gC?,Kiii)?k?b?zgl?Ve?n=n A?(A).n=31(B).n=32(C).n=999(D).n=1000(E).k?nA?3 YYY(B)PAnA?anKa1=12+1212a1,(1)?ka1=23?a2=23+1313a2,(2)?ka2=34?4an=nn+1an2+1n+11n+
10、1an+1n+1nn+1pn,n1,(3)m1A?BoU?3BAkn 2Bkn 1Akm1?AB?m1nAB?BvA?pn,n1Akk?nBk?n 1A?kpn,n1=1 an2,(4)A?=U?dCAk?n 1Bk?n 2Bk?dB?an2?A?1 an25dan=nn+1an2+1n+11n+1an+n(n+1)2n(n+1)2an2(5)?an=nn+2an2+1n+2=nn+2(n 2nan4+1n)+1n+2=.(6)end4?an=n+32(n+2),(7)end4?an=n+42(n+2).(8)d a31=1733 a32=917 a999=5011001 a1000=2515
11、01Y(B)=Ak32A?61114KKK,k10?10H?u100.?l,fuLzTg?u:.3Lzm=I?1I?1=I?2.?3?om?USK(A).S 50(B).50 S 90(C).90 S 100(D).100 S/k?S?U?ku?S?.d/S?100/?kS?98 180.5S?U90180270?90ka270kbo90a+270b+180(100ab)=98180?n?ab=4.XJ?3?1?o90S?Am=180S?A1270S?A=3?om(100ab)+2b=100(ab)=96(min)XJ?3_?1?o90S?A=180S?A1270S?Am=3?om(100ab
12、)+2a=100+(ab)=104(min).dS=96(C)?(.5XJ?:/:?=?mOo?om?2J=?:?S=94?KJ?.71115KKK?n 2?.n n?X=(ai,j)1i,jn(ai,j=0 1)?8.(1)y:3?X vdetX=n 1.(2)e2 n 4,ydetX n 1.(3)en 2023,y3X?detX nn4.5 YYY(1)eXk1?0k1?,KdetX=0;eXk1k1,K?z?(n 1)?/;eXk1?1,k1kn 11,K?z?k1k1?/,?z?(n 1)?/.eu),KX?1k?U5,?.(2)?X0=(ai,j)1i,jn,ai,j=1 i,j,
13、1 i,j n.KdetX0=(1)n1(n1).en,-X=X0.en,-XNX0?1?.KdetX=n 1.(3)?n=2k 1,-Y=?1111?k.KY?1?(n+1)(n+1)?,detY=(2k)2k=2k2k1.5Y?1n+1=(1,.,1|z n+1).Pti=1Y?1i1?(1 i n).-0i=12(tii n+1).?K0i?(?u0),?n1i.-X0=(1,.,n)t.Pt=Y1inti=1.KX0?0,1?n n?,detX0=t2(k2)2k1+1.8ek7,KNX0?1,?0,1?n n?,vdetX=2(k2)2k1+1.”?2k 1 n 2k+1 1.?2k
14、 1 n 2(k2)2k1.,nn4 nn4.?3 2k1 n 2(3k7)2k2.,nn4(k+1)2k1.?,detX nn4.91116KKKr,|r|LrC?l|r|=min|r n|:n Z.1.3s,vlimn|(2+1)ns|=0?2.3s,vlimn|(2+3)ns|=0?6 YYY1.3?s=1=?(2+1)n=xn+2yn,K(2+1)n=xn2yn.l?x2n 2y2n=(1)n.dd|xn+2yn 2xn|=|2yn xn|=|2y2nx2n|2yn+xn 0.2.3yb?sv(2+3)ns=mn+?n,limn?n=0.P=2+3,=2+3.?s1 x=Xn=0mnx
15、n+Xn=0?nxn.(1 x)(1 x)=1 6x+7x2,1 6x+7x2?s(1 x)=(1 6x+7x2)Xn=0mnxn+(1 6x+7x2)Xn=0?nxn.(9)?(1 6x+7x2)Pn=0mnxn=Pn=0pnxn,(1 6x+7x2)Pn=0?nxn=Pn=0nxn,KpnZ,limnn=0.(9)gl?mvpn+n=0,n 2.nn?7kpn=n=0,=(9)mdXn=0?nxn=G(x)1 6x+7x2.m?/XH(x)+A1 x+B1x.limn?n=0,?1?,u17LA=B=0.?n?n=0,l?(2+3)ns=mn Z,g101117KKK,i-?kN?b?N?
16、kT?U-”?U*?UU”?Xe-S1.-”?USU*?X”?1m Pk?&Ecm?N m?U2.z?”?I?=/uoffer3.XJ”?,uoffero Vp?V1 p u(c)k?XJT?offero”?2UY?e?XJToffero”?UYe 4.XJ”?,uofferoUYe U2?cL?5.ETS?k?offerXJvk?To”?k?N duN?S?dU?3N!?U5!”?k?&E?cL?”?3XS?cJe?N U?VzKXe(a)Xe”?kcm 1 +UXuofferl1m m?w?U3L?=uofferXKUY?e?c1yyu?N3m=mN?(kN )?V3kU?V?(b)b?p
17、=1?N +mNN?4(c)?p (0,1)?N +mNN?47 YYYu?1 k N-Zk”?Lck 1?l1k m?=N Up?T?VKkZk Zk+1.(a)XJ”?1k U3ck?o”?uoffer3e”?Up?VYk=pkN+(1 p)Zk+1.1/?c0?c?3k?L?()?uoffer?)?11dd”?1k uoffer?=?3ck?UppkN+(1 p)Zk+1 Zk+1,(10)=kN Zk+12.dukNk4O?Zkk4ZkNk+1N?(10)7,k N 1 ddLJ,m 5?=v?(10)?k?d?XJk=m v?(10)K?k mvdu1m?/?c0A?uoffer(b
18、)-pm”?(a)?Up?V?p=1?uoffer?UpA?Nk=mAk?8AkA?1k N?Up?Ak?VP(Ak)=1Nm 1k 1,1NA?Up?Vm1k1/?V=ck 1?Up3cm 1?kpm=m 1NNXk=m1k 1.pmkQ?dm=mNAvpm pm+1?m=vNXk=m+11k 1 1?m?N d?Cq%Clog(N/m)mNN1e.(c)?up (0,1)?pm?e?VNk=mAk,AkA?1k N?Up!?!?offer.kpm=pNNXk=mqk,2XJ?vKL1k l1k+1 m?K?Z?V12qkb1k N Up?/?VKkqk=?m 1m+1 pm?mm+1+1
19、pm+1?k 2k 1+1 pk 1?=(m)(k p)(k)(m p),;?d?XJl1m m”?(kN )Up?Vpm=pN(m)(m p)NXk=m(k p)(k),pmum kO?d?Cq9?%CO?N 4pmz?mN?vmNN p11p.?p=1 41/e.132023 Alibaba Global Mathematics CompetitionBall lighteningAs a chief officer of a secret mission,you had the following conversation with the leadingscientist.Scient
20、ist:”Chief,we have mastered the control law of ball lightning.We found that the rateof change of the radius of ball lightning in the laboratory v(t)satisfies the following equation.v=ar+r3 r5.Here r(t)represents the radius of ball lightning,and t is the time variable.At the initialmoment,there is no
21、 ball lightning,that is,r(0)=0.Accordingly,we also have v(0)=0.And a R can be artificially controlled.You can quickly change the value of a by pulling acontrol lever.We set its preset value to a=1.”You:”Well done,Doctor!Is a our only way of control?It doesnt seem to be able to startthe ball lightnin
22、g.”Scientist:”Youre right,Chief.We do have another way of control,which is to kick theinstrument.”You:”Doctor,are you kidding me?Kick it?”Scientist:”Yes,if you kick it,the value of r(t)will instantly increase by (is much smallerthan 1).”You:”I see.Thats helpful indeed.Our test goal today is to start
23、 the ball lightning,makeits radius strictly exceed2,and then let it gradually disappear completely.”Scientist:”Yes,Chief.We have designed four control schemes for this.What do you think of these schemes,Chief?”You looked at these options and found that the feasible schemes are().Set a=2,kick the ins
24、trument,wait for the ball lightning radius to strictly exceed2,then set a=12;Set a=3,kick the instrument,wait for the ball lightning radius to strictly exceed2,then set a=13;Set a=4,kick the instrument,wait for the ball lightning radius to strictly exceed2,then set a=14;Set a=5,kick the instrument,w
25、ait for the ball lightning radius to strictly exceed2,then set a=15.1Let O1,O2be two convex octahedron whose faces are all triangles,and O1is inside O2.Letthe sum of edge kengths of O1(resp.O2)be 1(resp.2).When we calculate 1/2,whichvalue(s)among the following can be obtained?(Multiple Choice)0.6411
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 阿里巴巴 全球 数学 竞赛 预选赛 参考答案
限制150内