2021阿里巴巴全球数学竞赛预选赛试题及参考答案.pdf
《2021阿里巴巴全球数学竞赛预选赛试题及参考答案.pdf》由会员分享,可在线阅读,更多相关《2021阿里巴巴全球数学竞赛预选赛试题及参考答案.pdf(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1n3Cpnn?mmY1,2.3J?-.,z(?vk?A:)g?1,2,.?|,?,35?3y|3*my3b?3*?|?14?S?1 m 1 n m?l dm,nv(m+n)dm,n 1,p?l,:m?l?lo1 JJJKKK(4)e?()SA 3*UNB 8;B 3*UNB?ku 8?;C 3*NB?2 yyyKKK(6)y?1R1 YYY.C S.R2 YYY.).UeS1 1,2,.?.k,?S1 1?n 2,e1 1,2,.,n 1?S,1 n U3=?u 1 m n 1,d dm,n1m+n,?,l1 m?m,!_?r1m+n?l,/?2m+n?lSS1 n?.?l?o2n+1+2n
2、+2+22n 1 2(lnn+1n+lnn+2n+1+ln2n 12n 2)=2ln2n 1n1.5 2ln2,?lUCX?,d1 n oJ?,?1 1,2,.,n 1 m?lvK8.d8B?NB?.)?.?%?:?IX1 1,2,3,4 O3(14,0),(14,0),(0,14),(0,14)?,=?O 0,2,32.d?l?u 2 144=811+2,?d?4 vK8.8ByeK:?k 2,1 1,2,.,2kSu?S?2k/?:?,?pm(3?)lvK8,?1,2,.,2k1?3?.K k=2.e k=c 2k?(.?2kl.1 2k+1,2k+2,.,2k+13?l?:.y35y?9
3、1 2k+1,2k+2,.,2k+1?lvK8.1 2k+1,2k+2 31 2k1?(=1 2k1?22k+1l?);1 2k+3,2k+4 31 2k1 1?;1 2k+2a 1,2k+2a 31 2k1a+1?;1 2k+1 1,2k+131 1?.duc 2k13?,?1?.y3?l(I?“#”?/).?2k+1,zl22k+114=2k+2,u?O m 2k n?,em?kl,Kdm,n2k+121m+n2(m+n)2k+11m+n;em?lTl?n 2k+2a1,2k+2a,K m 2k1a+1,2d(m+n)dm,n2k+2(2k+2a1+2k1a+1)=2k+2(22k1+a)
4、3 2k12k+1=38 1.1 1,2,.,2k+1m?lvK8.d8B,S?.33,4.2019c13Cpnnm?38E?,8NxKI/?m n/d n/eZ?(=3?/?)?m/m/?L R3?C?-N?mk.,.dk/?3?KKK(4)?2021=43 47.o3N,?Ld 43?m 47/?4 KKK(6)?6?)4R3 YYY.R4 YYY.If=.IO?T,?:d5L:T=,:0 ,/,:OAu =2k43.?Dkko“”(u =0),o:(u?43/?:?,u?:?,IP:m?43/?:).PCk,0=(2(k 1)43,0),Ck,1=(2k43,0);Dk,0=(2k+14
5、3,2),Dk,1=(2k+343,2);Ek=(2k+243,2).3 Dk?,?21:,XAk,i=(2(k 1)43+386,i11),i=1,.,21.,?7 z-=243?,21:,P Bk,i,i=1,.,21.(Ck,0Ck,1,Ck,0Ak,1,Ck,1Bk,1,Ak,iAk,i+1,Bk,iBk,i+1,Ak,iBk,i,Ak,iBk,i+1(i=1,.,21),9 Ak,21Dk,0,Bk,21Dk,1,Ak,21Ek,Bk,21Ek,Dk,0Ek EkDk,1.?m 47/.?43?(?E k)m 47/,U?N.:;.?m/?:()N?:(),l?“zg”“2021”?
6、“g”,dd?K?)?.55.?c“F?8c5?/,U“?o“F?o?OuN!?L4?z Rn?,”f?3?oC?8”,?K|J?uS?E?TK|J?od?S!?UJ?uO?x Rn?f(x)?o7L=u54?z f?zgO f?O?3TK?n p(10 m),?J?w?o”kb?f 1w?K4“F?gC?3?f!8I?%/5N5?J?Z3Lvk(/?Jm?Xo“F?o?4?z f LN!?k?:x?zd?f(x)L?,5U5N?zi f?ATkF?Z?xdu 0 k=0,1,2,.,1e1:yk:=argminf(y):y=xk tkei,i=1,.,n#O”2:sk:=1f(xk)f(yk
7、)t2k#e?:sk=1:sk=03:xk+1:=(1 sk)xk+skyk#S“:4:tk+1:=22sk1tk#sk=1:O?sk=0:y3”f:Rn R Xeb?bbb?1.f=?x,y Rn 0,1 kf(1 )x+y)(1 )f(x)+f(y).bbb?2.f 3 Rn f 3 Rn L-Lipschitz Ybbb?3.f?Y8k.=?R8x Rn:f(x)?k.6ubbb?1 bbb?2yhf(x),y xi f(y)f(x)hf(x),y xi+L2kx yk2?x,y Rnbbb?1 bbb?3 K?yf 3 Rn?k?f?5?yyyKKK(20)3bbb?13eu AFBT
8、ylimkf(xk)=f.7R5 yyy.b?f(xk)9 f f(xk)O,?infk0f(xk)f 0Pgk=f(xk),K infk0kgkk 0(?x f(x)=f,K f 5?y hgk,xkxi f(xk)ff(xk)N5 f Y8k.5?y xk x k.?infk0kgkk 0)3 0 kgkk k k 0?k 0,?ik 1,.,nv|hgk,eiki|kgkk ,(1)=1/n?f(yk)minf(xktkeik)f(xk)tk|hgk,eiki|+Lt2k2 f(xk)tk+Lt2k2.(2)tk2L+2,(3)k f(yk)f(xk)t2k,l?sk=1,?k tk+1
9、=2tkddtk t min?t0,L+2?0(4)k k 0?3 k?sk=1(K tk 0);z?k,f(xk)f(xk+1)t2 f ek.g?86.-n?k,P 0k=diag0,.,0|z k k k?-Y=0nAAt0n+1!(2n+1)(2n+1)?,A=(xi,j)1in,1jn+1 n(n+1)?AtP A?=?=(n+1)n?(j,i)?xi,j.(i)yyyKKK(10)E k k?X?A?,XJ3?v=(x1,.,xk)t?Xv=v.y:0 Y?A?Y?A?/X,K AAt?A?(ii)yyyKKK(15)-n=3 a1,a2,a3,a4 4 p?Pa=sX1i4a2i
10、9xi,j=aii,j+aj4,j1a2(a2i+a24)aj(1 i 3,1 j 4),i,j=(1 if i=j0 if i 6=j.y:Y k 7 p?A?9R6 yyy:(i)P In=diag1,.,1|z n n n?.?Cydet(I2n+1 Y)=det(2In AAt).,0 Y?A?Y?A?/X,AAt?KA?.(ii)P u=(a4,a4,a4),v=(a21+a24a,a22+a24a,a23+a24a).O?AAt=diaga21,.,a23+utu vtv.?f(s)=det(sIn AAt)AAt?A?.O?f(a2i)=a2ia2Y1j4,j6=i(a2i a2
11、j)(i 1,2,3,4).-a01,a02,a03,a04 a1,a2,a3,a4-?4S?.d f(x2i)?L?:AAtknp?A?b21,b22,b33,b1,b2,b3va01 b1 a02 b2 a03 b3 a04?.d,d(i)?Y k 7 p?A?.107.u R?Y?E f(x),R?(Sf)(x):(Sf)(x)=Z+e2iuxf(u)du.(i)KKK(10)S(11+x2)S(1(1+x2)2)?wL(ii)KKK(15)?k,P fk(x)=(1+x2)1k.b?k 1,?c1,c2?y=(Sfk)(x)v?xy00+c1y0+c2xy=0.11R7 YYY:(i)
12、S(11+x2)=e2|x|S(1(1+x2)2)=2(1+2|x|)e2|x|.(ii)c1=2k c2=42.)P V R?E!Y!?|?5m.Lemma 0.1.(i)e f(x)V,f0(x)V limxf(x)=0,K(Sf0)(x)=2ix(Sf)(x).(5)(ii)e f(x)V xf(x)V,K(Sf)0=2iS(xf(x).(6)n0.1?y.(i)(Sf0)(x)=Z+e2iuxf0(u)du=e2iuxf(u)|+Z+(e2iux)0f(u)du=2ixZ+e2iuxf(u)du=2ix(Sf)(x)(ii)?a,b R(a 1,i 11+z23 CA.?k.S?4:.
13、d?-A ,?(Sf)(x)=e2x.du f(x),(Sf)(x).?,(Sf)(x)=e2|x|.(ii)P g(x)=e2|x|.?O?(Sg)(x)=Ze2ixue2|u|du=Z0(e2ixu+e2ixu)e2udu=12(e2(1+ix)u1+ix+e2(1ix)u1 ix)|0=11+x2.13Lemma 0.4.(i)u?k 0,Sfk/X(Sfk)x=e2|x|gk(|x|),gk k g.(ii)u?k 0,S(S(fk)=fk S(S(xfk+1(x)=xfk+1(x).Proof.(i)k48fk+1=fk+12(k+1)xf0k(x).dn0.1,?48:Sfk+1=
14、Sfk12(k+1)(x(Sfk)(x)0.dd,d8B?(.(ii)5?f0k(x)=2(k+1)xfk+1(x)(xfk(x)0=(1+2k)fk(x)+2(k+1)fk+1(x).d(i)?(n0.1,?0.2?b?fk(x)xfk+1(x)(k 0).?,d8By S(S(fk)=fk(x)S(S(xfk+1(x)=xfk+1(x)(k 0).?K8?.(i)3n0.3y S(1+x2)1)=e2|x|.d(5)?S(2x(1+x2)2)=22ixe2|x|.2d(6)?S(2x2(1+x2)2)=(1 2|x|)e2|x|.?,S(1+x2)2)=2(1+2|x|)e2|x|.(ii
15、)k,?k 1,xjfk(x)(0 j 2k)?.?,d(6),y=(Sfk)(x)2k gY.dn0.1n0.4?:xy00+c1y0+c2xy=0?du(x2f0k+2xfk)c1xfkc242f0k=0.fk(x)=(1+x2)1k,?c1=2k c2=42.148.?,i#?i?|?%T?r?om?Czr+N?A?N?N n(t,x)Lr?ep t Lm?x LrT?o3 t u 0 x1 0 x kbbb?3.#r?5?k1?i?D mSdO?m?c(t)L2?Pr?DPrgC?!*l?T?r?x kP b(x)b?XJ3,P t=0?n(0,x)=n0(x)?n(t,x)?mzvX
16、e?(tn(t,x)+xn(t,x)+d(x)n(t,x)=0,t 0,x 0,N(t):=n(t,x=0)=c(t)+R0b(y)n(t,y)dy.(7)p N(t)#r?Ob?b,d L+(0,)=b(x)d(x)?(?)k.ekzb?c(t)0=#r?OPr?Dk(i)KKK(10)bbb?1bbb?2/?(7)n(t,x)v?I3?L?.b?Lm?AX2bbb?3)(7)N(t)?(ii)KKK(10)#r?O N(t)b(x)m?Xd?N(t)v?N(t),n0(x),b(x),d(x)?n(t,x)y N(t)vXe?O|N(t)|kbkekbktZ0|n0(x)|dx,(8)p
17、k kL L15(iii)yyyKKK(10)?3?m?n(t,x)koC?duro 0,(0)=R0b(x)(x)dx=1,?Kk?)(x):(0(x)+(0+d(x)(x)=(0)b(x),x 0,(x)0,R0(x)(x)dx=1.,?-?z n(t,x):=n(t,x)e0tyu?H:R+R+v H(0)=0,kddtZ0(x)(x)H?n(t,x)(x)?dx 0,t 0,yZ0(x)n(t,x)dx=e0tZ0(x)n0(x)dx.?zy3b3?.?z?16R8 YYY:(i)?kf1A?dum5OA?x(t)vdx(t)dt=1.?XA?kddtn(t,x(t)=d(x(t)n(
18、t,x(t).?n=?(7)2,?m?t?1b?b?kn(t+t,x+t)=n(t,x)td(x)n(x,t)+o(t).m1Lm?z1?L?r t2-t 0=?du N(t)?IPr?zu?,x?Pr mS0?#r?b(x)n(t,x)?mSkPr0?#rIrk?Pr?z3?LR0b(y)n(t,y)dy(ii)K N(t)?Ikr n(t,x)?N(t)?LI)d5?V-A?)U?ddsn(t+s,x+s)+d(x+s)n(t+s,x+s)=0,KXJ D(x)=Rx0d(y)dyodds?eD(x+s)n(t+s,x+s)?=0.(9)o?s max(t,x)keD(x+s)n(t+s,
19、x+s)=eD(x)n(t,x),x 0,t 0.(10)AO?-x=ys=y?t y n(t,y)=N(t y)eD(y).172-x=ys=t?t y n(t,y)=n0(y t)eD(yt)D(y).?N(t)v?L?N(t)=Z0b(y)n(t,y)dy=Zt0b(y)n(t,y)dy+Ztb(y)n(t,y)dy.A?m1?A?u x=0,t 0?1?A?u x 0,t=0 n(t,y)?LO“?N(t)=Zt0b(y)eD(y)N(t y)dy+Ztb(y)eD(yt)D(y)n0(y t)dy.(11)?n=?N(t)v?N(t)=Zt0b(t x)eD(tx)N(x)dx+Z0
20、b(x+t)eD(x)D(x+t)n0(x)dx.(12)?d(x)0 D 4O?eD(tx),eD(x)D(x+t)u 1u,2|b(x)?k.5 N(t)Xe?O|N(t)|kbkZt0|N(x)|dx+kbkZ0|n0(x)|dx.?|Gronwall n?y?(iii)2?O?Kk(7)U?-?zv?te n(t,x)+xe n(t,x)+(0+d(x)n(t,x)=0.,?/U?n?t n(t,x)(x)+x n(t,x)(x)=0,?ktH?n(t,x)(x)?+xH?n(t,x)(x)?=0.18A?KK?3k(x(x)(x)=(0)b(x)(x),x 0,(x)0,R0(x)(
21、x)dx=1.L?O?t?(x)(x)H?n(t,x)(x)?+x?(x)(x)H?n(t,x)(x)?=(0)b(x)(x)H?n(t,x)(x)?.P d(x)=b(x)(x)dx x 3 R+?,ddtZ0(x)(x)H?n(t,x)(x)?dx=(0)Z0H?n(t,x)(x)?d(x)+(0)H?n(t,0)(0)?.5?d(0)=1 n(t,0)=R0b(x)n(t,x)dxo n(t,0)(0)=n(t,0)=Z0b(x)n(t,x)dx=Z0 n(t,x)(x)d(x),u?ddtZ0(x)(x)H?n(t,x)(x)?dx=(0)?Z0H?n(t,x)(x)?d(x)+H?Z
22、0 n(t,x)(x)d(x)?.2dJensen?ddtZ0(x)(x)H?n(t,x)(x)?dx 0.?-H(u)=u=?y?19Alibaba Global Mathematics Competition-Quanlifying1,2.In a fictional world,each resident(viewed as geometric point)is assigned a number:1,2,.In order to fight against some epidemic,the residents take some vaccine andthey stay at the
23、 vaccination site after taking the shot for observation.Now suppose thatthe shape of the Observation Room is a circle of radius14,and one requires that thedistance dm,nbetween the Resident No.m and the Resident No.n must satisfy(m+n)dm,n 1.Where we consider the distance on the circle,i.e.,the length
24、 of the minor arc betweentwo points.1.Multiple-Choice Question(4 points)Which of the following is correct?A No more than 8 residents can be placed inside the observation room;B The maximal number of residents that can be placed simultaneously is greaterthan 8,but still finite;C Any number of residen
25、ts can be placed inside the observation room.2.Proof Question(6 points)Give a proof of your answer to Question(i).1R1 Answer.The Choice C is correct.R2 Answer.Solution I.We can place the Residents No.1,2,.according to the fol-lowing rule.First,put Resident No.1 arbitrarily.For n 2,if Residents No.1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 阿里巴巴 全球 数学 竞赛 预选赛 试题 参考答案
限制150内