基于词向量语义分类的微博实体链接方法-冯冲.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《基于词向量语义分类的微博实体链接方法-冯冲.pdf》由会员分享,可在线阅读,更多相关《基于词向量语义分类的微博实体链接方法-冯冲.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4261Vol.42, No.62016M6ACTA AUTOMATICA SINICA June, 2016M_lspL8ZE1F1Rt111;2K1pL8pMoV, 1H,34.3.YV9L8S&?L8ls+.4.T(10)9L8+F,iTKL8TKL8.TFlfi,5RS:NIL.3L3.1ylMV_alMV_aL8V#_M_(Wikipedia18,P2015M719S.YV?5Mo|id9,?V6U.V6L?Table 6 Scale of experiment data?lMVKey94293406lMVValue91948277lMVKey9213764lMVValue92354
2、687L894369348920142L|NLPCC20149L8_c177HpS400Hp(V|10000H|S)T_,V:9600Hp|100HST,kPNLPCC20142Z4k,c1152L8.3.2L!91)|rTzE1.YV1Er.s|NLPCC2014KZE(NLPCC)19_a/qL8ZE(EF*)20#Sc(CMEL)21ZE1.NLPCCSsL8MZEh, EF*q$FZE, CMELSL8:cTMZEL8h.LV,ZE(M).n5_sB,Kfi= 1:4, = 0:6,KkZE.|q(Precision)_azq(Recall)#F1TNS., in-KBsVUMoXlc
3、L8q, NILVUlcMoL8q.1LTV7V8U.V7 in-KBLTTable 7 Results of in-KBdqzqF1NLPCC 0.7927 0.8488 0.8198SCWE+EF 0.8137 0.8593 0.8358EF 0.7641 0.8142 0.7884CMEL 0.7951 0.8345 0.8143V8 NILLTTable 8 Results of NILdqzqF1NLPCC 0.9024 0.8653 0.8835SCWE+EF 0.9144 0.8763 0.8949EF 0.8871 0.8648 0.8758CMEL 0.8543 0.8694
4、 0.8461LT,Y8sVUZE.LV,ZEq_azqZ(AE,+YqA46.7ZENLPCC_aEF*CMELZE1uYZEFM_ls+,LT46VM_ls+r.,zQH*_a_a:_av-_aS_a%p_avX, NLPCCEF|v-,7ZE|-.2)1/M_ls+(SCWE)TY.SCWEL8+(EF)+,|LT1.TV9V10U.V9 in-KBLTTable 9 Results of in-KBqzqF10 0.7532 0.8016 0.77660.2 0.7621 0.8158 0.78800.4 0.7943 0.8375 0.81530.6 0.8137 0.8593 0.
5、83580.8 0.8032 0.8432 0.82271.0 0.7983 0.8488 0.8228V10 NILLTTable 10 Results of NILqzqF10 0.8432 0.8532 0.84820.2 0.8643 0.8713 0.86780.4 0.8917 0.8732 0.88240.6 0.9148 0.8762 0.89510.8 0.9032 0.8754 0.88911.0 0.9013 0.8743 0.8876VLTA, = 0H,ZE|L8T+,NHF1K.9, F199. = 0:6H, F1K. 0:6, F17S.VyL8ZErT46GM
6、_ls+.bVUF1W1,ym4.3)M_ls+k1.SCWEL8,|k4kW1.m5U,k= 10H,|KF1,515W, kMrqYv.k = 20H,SCWEF1v/.YVHpc_Md9,?CHp6:M_lspL8ZE921(7.91_M.sk = 20HF1/+|V,_.m4ZE/F1Fig.4 F1 scores of the combined measure withthe parameterm5 SCWEk/F1(Fig.5 F1 scores of SCWE with the k features4Zp_MMlbWL!,4M_lspL8lh,!9L8ZE,iNLPCC2014?
7、.LTVP4M_lsL8ZE,rTNLPCCX7KzT,qA46.T1,BM_mL8,=sL8.References1 Chinese Microblog Service. Sina Weibo User DevelopmentReport in 2014 Online, available: http:/ November 24, 2015(Sp_. 2014Mp?ZOnline, avail-able: http:/ Novem-ber 24, 2015)2 Guo Y H, Qin B, Liu T, Li S. Microblog entity linking byleveraging
8、 extra posts. In: Proceedings of the 2013 Confer-ence on Empirical Methods in Natural Language Process-ing. Seattle, USA: Association for Computational Linguis-tic, 2013. 8638683 Yang Jin-Feng, Yu Qiu-Bin, Guan Yi, Jiang Zhi-Peng. Anoverview of research on electronic medical record orientednamed ent
9、ity recognition and entity relation extraction.Acta Automatica Sinica, 2014, 40(8): 15371562(,l,1j,.0h_L8MYL81|8.1, 2014, 40(8): 15371562)4 Shen W, Wang J Y, Han J W. Entity linking with a knowl-edge base: issues, techniques, and solutions. IEEE Trans-actions on Knowledge and Data Engineering, 2015,
10、 27(2):4434605 Jiang L, Yu M, Zhou M, Liu X H, Zhao T J. Target-dependent twitter sentiment classiflcation. In: Proceedingsof the 49th Annual Meeting of the Association for Compu-tational Linguistics: Human Language Technologies. Port-land, Oregon, USA: 2011. 1511606 Shen W, Wang J Y, Luo P, Wang M.
11、 Linking named entitiesin tweets with knowledge base via user interest modeling.In: Proceedings of the 19th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining. NewYork, USA: ACM, 2013. 68767 Liu X H, Li Y T, Wu H C, Zhou M, Wei F R, Lu Y. Entitylinking for tweets. In: Proceedi
12、ngs of the 51st Annual Meet-ing of the Association of Computational Linguistics. Sofla,Bulgaria: Association for Computational Linguistics, 2013.130413118 Odbal, Wang Zeng-Fu. Emotion analysis model using com-positional semantics. Acta Automatica Sinica, 2015, 41(12):21252137(r,9.BFlfs.1, 2015, 41(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 向量 语义 分类 实体 链接 方法
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内