2022高中数学最新优秀教案设计范例精选.docx
《2022高中数学最新优秀教案设计范例精选.docx》由会员分享,可在线阅读,更多相关《2022高中数学最新优秀教案设计范例精选.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高中数学最新优秀教案设计范例精选教案是老师进行教学的重要道具,对教学有重要的作用,可以帮助老师更好地把控教学节奏。有了教案,老师可以更好地进行教学,提高自身的教学水平,更好地实现教学目标。优秀的教案设计对老师的帮助是特别大的,这里给大家共享一些优秀的教案设计,供大家参考。中学数学圆锥曲线教案范文一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是多数次实践后的高度抽象.恰当地利用定义解题,很多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来娴熟的解题。二、学生学习状况分析我所任教班级的学生参加课堂教学活动的主
2、动性强,思维活跃,但计算实力较差,推理实力较弱,运用数学语言的表达实力也略显不足。三、设计思想由于这部分学问较为抽象,假如离开感性相识,简单使学生陷入逆境,降低学习热忱.在教学时,借助多媒体动画,引导学生主动发觉问题、解决问题,主动参加教学,在轻松开心的环境中发觉、获得新知,提高教学效率.四、教学目标1.深刻理解并娴熟驾驭圆锥曲线的定义,能敏捷应用定义解决问题;娴熟驾驭焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本学问求解圆锥曲线的方程。2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的实力;通过对问题的不断引申,细心设问,引导学生学习
3、解题的一般方法。3.借助多媒体协助教学,激发学习数学的爱好.五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求最值3.定义法求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计(一)开宗明义,提出问题一上课,我就直截了当地给出——例题1:(1) 已知A(-2,0), B(2,0)动点M满意|MA|+|MB|=2,则点M的轨迹是( )。(A)椭圆 (B)双曲线 (C)线段 (D)不存在(2)已知动点 M(x,y)满意(x1)2(y2)2|3x4y|,则点M的轨迹是( )。(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线定义是揭示概念
4、的逻辑方法,熟识不同概念的不同定义方式,是学习和探讨数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了肯定的相识,他们是否能真正驾驭它们的本质,是我本节课首先要弄清晰的问题。为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,细心打算了两道练习题。估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分学问的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 假如有学生提出:可以利用变
5、形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。在对学生们的解答做出推断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。(二)理解定义、解决问题例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求ABC面积的最大值。(2)在(1)的条件下,给定点P(-2,2), 求|PA|运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模
6、式,是解析几何问题中的一种常见题型,也是学生们比较简单混淆的一类问题。例2的设置就是为了便利学生的辨析。依据以往的阅历,多数学生看上去都能顺当解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能精确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简洁,因此面对例2(1),多数学生应当能精确给出解答,但是对于例2(2)这样相对比较生疏的问题,学生就无从下手。我提示学生把3/5和离心率联系起来,这样就简单和其次定义联系起来,从而找到解决本题的突破口。(三)自主探究、深化相识假如时间允许,练习题将为学生们供应一次数学猜想、试验的机会——练习:
7、设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。引申:若将点A移到圆C外,点M的轨迹会是什么? 练习题设置的目的是为学生课外自主探究学习供应平台,当然,假如课堂上时间允许的话,可借助多媒体课件,引导学生对自己的结论进行验证。(一)圆锥曲线的定义1. 圆锥曲线的第肯定义2. 圆锥曲线的统肯定义(二)圆锥曲线定义的应用举例x2y21.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P169到右准线的距离。|PF1|PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为
8、两焦点,O为双曲线的中心,求的|PO|取值范围。3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。x2y24.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求259|MA|+|MF|的最小值。x2y211(2)已知A(,3)为肯定点,F为双曲线1的右焦点,M在双曲线右支上移动,当92721|AM|MF|最小时,求M点的坐标。 2x2(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 8x2y25.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA
9、|+|MB|的最259小值与最大值。七、教学反思1.本课将借助于,将使全体学生参加活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用多媒体课件协助教学,节约了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出多媒体课件与探究合作式教学理念的有机结合的教学优势。2.利用两个例题及其引申,通过一题多变,层层深化的探究,以及对揣测结果的检测探讨,培育学生思维实力,使学生从学会一个问题的求解到驾驭一类问题的解决方法. 按部就班的让学生把握这类问题的解法;将学生简单混淆的两类求最值问题并为一道题,便利学生进行比较、分析。虽然从表面
10、上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。总之,如何更好地选择符合学生详细状况,满意教学目标的例题与练习、敏捷把握课堂教学节奏仍是我今后工作中的一个重要探讨课题.而要能真正进行素养教化,培育学生的创新意识,自己首先必需更新观念——在教学中适度运用多媒体技术,让学生有参加教学实践的机会,能够使学生在学习新学问的同时,激发起求知的欲望,在寻求解决问题的方法的过程中获得自信和胜利的体验,于不知不觉中改善了他们的思维品质,提高了数学思维实力。中学数学等比数列优秀教案教学目标1.理解等比数列的概念,驾驭等比数列的通项公式,并能运用公式解决简洁的问题。(
11、1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能依据定义推断一个数列是等比数列,了解等比中项的概念;(2)正确相识运用等比数列的表示法,能敏捷运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式相识等比数列的性质,能解决某些实际问题。2.通过对等比数列的探讨,逐步培育学生视察、类比、归纳、猜想等思维品质。3.通过对等比数列概念的归纳,进一步培育学生严密的思维习惯,以及实事求是的科学看法。教材分析(1)学问结构等比数列是另一个简洁常见的数列,探讨内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而探讨图像,又给出等比中项的概念,最终
12、是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的相识与应用,教学难点在于等比数列通项公式的推导和运用.与等差数列一样,等比数列也是特别的数列,二者有很多相同的性质,但也有明显的区分,可依据定义与通项公式得出等比数列的特性,这些是教学的重点.虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍旧不熟识;在推导过程中,须要学生有肯定的视察分析猜想实力;第一项是否成立又须补充说明,所以通项公式的推导是难点.对等差数列、等比数列的综合探讨离不开通项公式,因而通项公式的敏捷运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通
13、项公式的应用.(2)等比数列概念的引入,可给出几个详细的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)依据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点相识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的探讨阅历,等比数列的探讨完全可以放手让学生自己解决,老师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高中数学 最新 优秀 教案设计 范例 精选
限制150内